
Optical Character Recognition of
Jutakshars within Devanagari Script

Sheallika Singh : 12665
Shreesh Ladha : 12679

May 3, 2016

ANNEXURE-II

DECLARATION

I/We hereby declare that the work presented in the project report entitled
``………………………………………” contains my own ideas in my own
words. At places, where ideas and words are borrowed from other sources,
proper references, as applicable, have been cited. To the best of our knowledge
this work does not emanate or resemble to other work created by person(s)
other than mentioned herein.

The work was created on this ….. day of ……….. 20…..

Name and Signature Name and Signature

Date:

Abstract

Optical Character Recognition (OCR) is a technique of converting
document images, scanned documents and PDF files into editable text. It is
also widely used in document handling applications, reading serial numbers
in automotive or electronic applications, aiding visually impaired people to

read and many more. A lot of work has been done on OCR for roman
script, but similar softwares for hindi languages with high precisions are yet

to be developed. It is difficult to create robust systems for Devanagari
because of many of its complicated features. One such feature which adds

to the complications is a class of characters called Jutakshars (or
Samyutakshars). In this project we have tried to detect and identify these

jutakshars within words and have obtained encouraging results.

Contents

1 Introduction 2

2 Approach 5
2.1 Dataset Formation . 5
2.2 Jutakshar Detection . 5
2.3 Jutakshar Identification . 6

3 Results 11
3.1 Jutakshar Detection . 11
3.2 Jutakshar Identification . 12
3.3 Overall Document Accuracy 15
3.4 Summary . 16

4 Conclusion 17

Bibliography 18

1

Chapter 1

Introduction

Optical character recognition widely known as OCR, has allowed us to take
great steps forward towards tackling one of the hardest challenges faced by
computer users in last few decades. OCR is a tool for converting printed
text into editable and human readable text. Quite extensive work has been
done in reference to OCR systems for Roman script and there are a lot of
softwares which can recognise characters and words with high accuracies.
However, there is a lack of such systems for Devanagari script (which forms
the basis of several Indian languages like Hindi, Sanskrit, Marathi) because
of their highly complicated structure and composition.

An example of such a composition is a form of character conjunction referred
to as Jutakshar. A Jutakshar is basically a concatenation of two characters
- one half and one full character. Some examples have been shown in Fig-
ure 1.2. Words containing Jutakshar are quite popular and can be found
many times within a document. Still, most existing models of Hindi OCR do
not take special care to handle such characters, which in turn reduces their
precision. This happens because such characters get recognized as a single
character which badly affects the overall word/char prediction rate. In our
project, we have tried to build upon existing frameworks to better handle
these special strings. Note that various forms of Jutakshars exist in Hindi
Language but well be concentrating on only one class where the half char-
acter precedes the full character in horizontal direction (example shown in
image). A basic working of an OCR model is described below. We will not
be talking in detail about its functioning and it is assumed that the reader is
aware of it while going through our report. More details of it can be found
in [1]

The Hindi OCR model that we are working with, starts off with some basic

2

preprocessing of the image. The preprocessed image is used to extract lines
by creating horizontal histograms and locating gaps. Words are extracted
from within those lines using vertical histograms and finding gaps. The word
is broken up into three regions : the part above the shirorekha , the part
in the middle and the part at the bottom. This is better explained in the
image below. Now, a vertical histogram is used again within each of these
regions to segment the different characters. These segmented characters are
fed to three pretrained classifiers, each for the three different regions, and
the predictions are then combined according to the rules of the Devanagari
script to finally obtain a word.

Figure 1.1: Shirorekha and 3 regions of a word: Upper, Core and Lower[1]

Figure 1.2: Different types of Jutakshars (We have worked on the ones similar
to the first four)

3

Figure 1.3: Sample Devanagari Text[1]

Figure 1.4: Example of Segmentation[1]

4

Chapter 2

Approach

Our plan of action was to first predict whether a word contained a Jutakshar
or not and then proceed to correctly recognize the Jutakshar.

2.1 Dataset Formation

In this regard, we first created a dataset of images of Jutakshars normalized
to a size of 20x20. For this step we created an image containing all the
jutakshars and used the same algorithm that was used to extract characters
from an image to extract these individual jutakshars. In order to make our
model more robust, noise was added to the images before training the model.
We added images with 2 types of noises:

• Gaussian noise - noise having probability density function equal to that
of gaussian distribution (normal distribution) and added smartly based
on the density of pixels.

• Adaptive mean thresholding - Thresholding based on the mean of the
neighboring values.

A set of 60 such characters was used(not exhaustive) and copies of it were
generated in eight different fonts(Chandas, Devanagari, Gargi, Guruma, Ko-
hinoor, Lohit, Osho, Sarai) of the Devanagari family. A dataset for characters
was already present from a preexisting model.

2.2 Jutakshar Detection

Now, we trained classifiers to predict whether a given character was a Ju-
takshar or not. Simple features such as pixel values are unable to capture

5

the different characteristics of images. Hence, we started off by using Hog or
Histogram of Gradient features. Intuitively Hog tries to capture the shape of
structures in the region by capturing information about gradients. It does so
by dividing the image into small blocks of cells. Each pixel in the cell then
votes for a gradient orientation bin with a vote proportional to the gradient
magnitude at that pixel. The first model(a)(SVM) was trained using these
hog features.

The second classifier(b)(logistic) was trained using features extracted from
the penultimate layer of a pretrained convolutional neural network, bvlc refer-
ence caffenet, trained on ILSVRC 2012(ImageNet 2012) by Krizhevsky et al..
The features were extracted using Caffe, a deep learning framework made
with expression, speed, and modularity in mind which provides models for
different tasks with all kinds of architectures and data[2]. The images that
were used to train bvlc reference caffenet were completely different from the
images that we are dealing with. However, it has been observed that such
deep models, through their subsequent layers, are able to extract relevant
features from images which work well for many computer vision tasks and
hence was the reason for our choice.

Finally, the third classifier(c) was a very simple model, using the width of
the characters to classify it correctly into the two categories. We used SVM
for (a) as it was performing better overall than other classifiers. While for
(b), we chose a logistic classifier since we required the probabilities for fus-
ing the above models. But, the final model used a combination of only the
above two classifiers and predicted by a simple majority voting. Incase of a
conflict, if (b) rejected then we rejected. Otherwise if (b) accepted with a
high probability, we accepted. The model trained on hog features did not
give high accuracy, as is visible in the image(Figure 2.4), and hence was not
used in the final model.

2.3 Jutakshar Identification

The previous Jutakshar Detection model detected words containing jutak-
shars. Now we moved onto creating a model to predict these words and in
turn the Jutakshars.

For building this model, the words were (as usual) segmented into characters.
Owing to the structure of jutakshars and the algorithm used in segmenta-
tion, the jutakshars were being segmented as one single character. To handle

6

this issue, we modified the algorithm used in the segmentation of words into
characters so that even the jutakshar would get separated into the half and
the full character forming the respective jutakshar. For such characters, we
used similar vertical histograms to locate gaps, but we restricted our search
in the middle part of the character. This was achieved by creating a his-
togram in a window length of w/2 (where w = width of the character box)
whose starting and ending points lay w/4 and 3*w/4 pixels away from the
beginning position. The position where the minima was found was used to
split the the Jutakshar into the half and the full character forming it.

Now, this segmented word is passed onto the character classifiers to pre-
dict the respective characters (also trained on the penultimate features of
the deep model). Note that even the half character is predicted as a full
character using this model. A dictionary is relied upon to resolve this issue.
In that regard, we use a Hindi dictionary provided by Aspell, which gives a
list of suggested correct words for an incorrect word. It doesnt just compare
the words but also uses phonetic comparisons with other words and for this
reason is able to give good results. Coming back to our procedure, our pre-
dicted word is now fed to the dictionary and a heuristic is defined to find the
correct prediction from the suggested list.

A first simple filter for this list is to only look for words which contain
’Halant’. Then, we assign a score to all such words and the one with the
minimum score among them is chosen as the final prediction. Score assigned
to each word is a weighted average of :

• length of the longest common substring between the predicted word
with the jutakshars removed and the suggested word in the list,

• number of substrings that match in the predicted word with the jutak-
shars removed and the suggested word,

• number of different characters between the predicted and the suggested
word,

• and the levenshtein distance (computes the minimum number of steps
required for converting one string into another by insertions, deletions
or substitutions of single characters) between the predicted and the
suggested word

The exact expression was :
Score = 2 ∗ (1) + 3 ∗ (2) − abs((3) − (4))

7

Instead of using a simple regular expression, we used this heuristic which we
found to be more flexible. Also, the prediction of the characters apart from
the ones constituting the jutakshar are believed to be fairly accurate. There-
fore, only that part was used while using the heuristic to choose the final
prediction from the list provided by the dictionary. The weights assigned to
the above features may not be the most optimal, however, worked fine on
our dataset. A better heuristic and weightage could be designed.

Figure 2.1: An example of how splitting works

Owing to the great performance of the jutakshar identification mod-
els(using features of pre-trained deep models) we tried experimenting with
our own deepnet models. For this purpose, we trained end-to-end models us-
ing our data. Since such deep networks require a lot of data, we increased our
corpus of fonts(to fifteen as opposed to 8 earlier) to increase our learning set.
We further added random noise (gaussian), rotations, zooming and horizon-
tal/vertical shifting to increase variability and reduce chances of overfitting.
This process of noise generation is different from our earlier case. Here we are
using another amazing deep learning library : Keras[3], for all our training
purposes. It preprocesses every batch of data while training and adds the
above noise by itself. Our architecture was [Conv - Relu - Conv - Relu -
Dropout]*2 - [Conv - Relu - Dropout] - FC layer - Softmax
The results that we got for our deep models were very similar to the ones
that we were getting with the previous models. This suggests that the fea-
ture representations being learnt are very similar in both the cases. However,
we did not get a chance to experiment more with the architecture and the
hyperparameteres of the model.

8

Figure 2.2: Example of suggestions returned by the dictionary

Figure 2.3: Correction in the predicted word after applying our heuristic

9

Figure 2.4: Comparison of how different models work for Jutakshar Detec-
tion. Model (b) on the top, followed by (a) and (c)

10

Chapter 3

Results

3.1 Jutakshar Detection

Document Total # Words # Words # Words incorrectly
Words containing containing detected as

Jutakshars Jutakshars and containing
detected correctly Jutakshars

Doc 1 166 6 6 0
Doc 2 359 20 20 0
Doc 3 131 5 4 1
Doc 4 138 9 9 0

Table 3.1: Jutakshar Detection (Font 1)

Document Total # Words # Words # Words incorrectly
Words containing containing detected as

Jutakshars Jutakshars and containing
detected correctly Jutakshars

Doc 1 145 6 6 0
Doc 2 218 4 4 0
Doc 3 138 4 4 0
Doc 4 167 7 7 2

Table 3.2: Jutakshar Detection (Font 2)

11

Document Total # Words # Words # Words incorrectly
Words containing containing detected as

Jutakshars Jutakshars and containing
detected correctly Jutakshars

Doc 1 98 5 5 1
Doc 2 171 10 10 1
Doc 3 243 10 9 0
Doc 4 210 7 7 0

Table 3.3: Jutakshar Detection (Font 3)

Document Total # Words # Words # Words incorrectly
Words containing containing detected as

Jutakshars Jutakshars and containing
detected correctly Jutakshars

Doc 1 72 3 3 1
Doc 2 99 3 3 1
Doc 3 114 8 8 1
Doc 4 133 5 5 0

Table 3.4: Jutakshar Detection (Font 4)

Document Total # Words # Words # Words incorrectly
Words containing containing detected as

Jutakshars Jutakshars and containing
detected correctly Jutakshars

Doc 1 246 10 10 3
Doc 2 110 3 3 1
Doc 3 89 2 2 2
Doc 4 129 9 9 2

Table 3.5: Jutakshar Detection (Font 5)

3.2 Jutakshar Identification

Note that some words are not considered here since they were not present
in the dictionary we used and hence have not been counted for computing
accuracies

12

Document Total # Words #Words
Words containing containing

Jutakshars Jutakshars and
indentified correctly

Doc1 166 6 6
Doc2 357 18 17
Doc3 130 3 2
Doc4 138 8 3

Table 3.6: Jutakshar Identification (Font1)

Document Total # Words #Words
Words containing containing

Jutakshars Jutakshars and
indentified correctly

Doc1 143 4 2
Doc2 218 4 3
Doc3 138 4 0
Doc4 167 7 2

Table 3.7: Jutakshar Identification (Font2)

Document Total # Words #Words
Words containing containing

Jutakshars Jutakshars and
indentified correctly

Doc1 98 5 5
Doc2 170 9 6
Doc3 242 9 7
Doc4 209 6 2

Table 3.8: Jutakshar Identification (Font3)

13

Document Total # Words #Words
Words containing containing

Jutakshars Jutakshars and
indentified correctly

Doc1 71 2 1
Doc2 98 2 1
Doc3 113 7 6
Doc4 133 5 4

Table 3.9: Jutakshar Identification (Font4)

Document Total # Words #Words
Words containing containing

Jutakshars Jutakshars and
indentified correctly

Doc1 245 9 8
Doc2 109 2 2
Doc3 89 2 1
Doc4 128 8 6

Table 3.10: Jutakshar Identification (Font5)

14

3.3 Overall Document Accuracy

Here we have listed accuracies for three different models. The first model(I)
is the model designed in [1], the (II) model includes our Jutakshar Detec-
tion model but with the same character recognition model as that of [1], and
finally the (III) model includes the Jutakshar Detection model with the char-
acter recognition model trained on features extracted from the penultimate
layer of a deep model (as discussed above). Note all punctuations have been
removed while calculating accuracies.

Document CER(%) WER(%) CER(%) WER(%) CER(%) WER(%)
(I) (I) (II) (II) (III) (III)

Doc 1 6.8 16.5 7.6 10.4 6.7 8.6
Doc 2 8.2 19.8 5.7 7.7 6.3 8.5
Doc 3 8.1 19.0 8.4 11.1 7.6 8.8
Doc 4 9.8 22.7 10.8 13.9 9.5 12.1

Overall 8.2 19.6 8.1 10.7 7.5 9.5

Table 3.11: OCR Accuracy : Comparing Models (Font 1)

Document CER(%) WER(%) CER(%) WER(%) CER(%) WER(%)
(I) (I) (II) (II) (III) (III)

Doc 1 13.5 29.1 17.2 25.9 17.6 25.4
Doc 2 8.9 20.3 12.1 16.0 9.9 13.0
Doc 3 11.7 31.2 15.8 20.8 15.7 19.6
Doc 4 6.9 15.9 6.6 10.7 6.9 11.8

Overall 9.4 23.6 12.9 18.3 12.5 17.4

Table 3.12: OCR Accuracy : Comparing Models (Font 2)

Document CER(%) WER(%) CER(%) WER(%) CER(%) WER(%)
(I) (I) (II) (II) (III) (III)

Doc 1 9.3 20.8 10.7 8.8 10.0 6.9
Doc 2 10.4 22.1 10.6 14.8 11.8 16.8
Doc 3 8.2 19.7 9.0 13.4 8.7 12.8
Doc 4 9.8 23.3 11.1 14.7 10.2 11.8

Overall 9.3 21.5 10.35 12.9 7.8 12.1

Table 3.13: OCR Accuracy : Comparing Models (Font 3)

15

Document CER(%) WER(%) CER(%) WER(%) CER(%) WER(%)
(I) (I) (II) (II) (III) (III)

Doc 1 8.8 18.4 12.2 15.2 13.6 17.6
Doc 2 9.6 18.7 10.3 14.3 10.1 14.3
Doc 3 6.3 16.6 6.6 11.9 7.6 13.3
Doc 4 7.1 16.9 8.8 14 9.3 13.1

Overall 7.8 17.5 9.5 13.8 10.1 14.6

Table 3.14: OCR Accuracy : Comparing Models (Font 4)

Document CER(%) WER(%) CER(%) WER(%) CER(%) WER(%)
(I) (I) (II) (II) (III) (III)

Doc 1 6.3 16.0 6.0 8.6 5.6 8.1
Doc 2 4.5 9.8 5.5 7.5 5.5 7.5
Doc 3 6.7 17.9 8.0 12.2 7.8 12.2
Doc 4 8.3 17.3 8.8 9.8 8.1 7.9

Overall 6.5 15.4 7.0 9.5 6.7 8.9

Table 3.15: OCR Accuracy : Comparing Models (Font 5)

3.4 Summary

We obtained encouraging results in detecting the presence of a Jutakshar in
a word. While results obtained from the Jutakshar Identification model were
reasonable, but lagged in some areas. Sometimes owing to a poor prediction
of the word itself by the model, the dictionary suggested incorrect or no words
at all. While in a few instances, either the dictionary itself gave incorrect
words(words not part of the Hindi Language) or the correct word wasn’t even
part of the dictionary’s vocabulary. However, the overall document accuracies
still showed great improvement. Word Error Rates were significantly lower
for all documents and across all fonts. The mean word error rate was 19.5%
for (I) while 12.5% for model(III).

16

Chapter 4

Conclusion

We extended a Hindi OCR to specifically address the Jutakshar detection
and identification issue. Classifiers were trained to identify words containing
jutakshars using features extracted from a pretrained convolutional neural
network and the width of the character box. The identified words were
presented to a dictionary which provided a list of suggestions for the word.
Our heuristic was then used to select the correct word from the list. The
improvement in the overall document accuracies proves the effectiveness of
our approach and provides motivation to try to resolve this issue further. We
identified a few areas that could improve this system further:

• Our model relies heavily on the dictionary. Hence a more powerful
dictionary would reduce quite a few errors

• The dataset can be made more representative by adding more fonts
and possible jutakshars

• Two deepnet models could be trained - One for Jutakshars and the
other for all the rest(since most of our errors were in correctly predicting
characters other than the basic ones).

17

Bibliography

[1] Ankit Modi, Harish Karnick, B M Shukla, Optical Charac-
ter Recognition for Devanagari with a Hindi Language Model,
http://172.28.64.70:8080/jspui/handle/123456789/15121

[2] Jia, Yangqing, et al. ’Caffe: Convolutional architecture for fast fea-
ture embedding.’ Proceedings of the ACM International Conference
on Multimedia. ACM, 2014.

[3] Keras : http://keras.io/

[4] Dalal, N. and Triggs, B., Histograms of Oriented Gradients for Human
Detection, IEEE Computer Society Conference on Computer Vision
and Pattern Recognition, 2005, San Diego, CA, USA

18

