
 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

Reducing Manufacturing Failures
 Aayush Mudgal Sheallika Singh Vibhuti Mahajan

 Computer Science Data Science Data Science
 Columbia University Columbia University Columbia University
am4590@columbia.edu ​ ss5136@columbia.edu​ ​ vm2486@columbia.edu

Abstract​ —​It is of high importance for big companies to
maintain high quality of products. In this project we use
the measurements of the parts of the appliances as they
progress through an assembly- line to predict whether
there would be a defect in the part. This will help
companies to produce high quality, low cost products at
the user end. Building upon inferences from data and an
MCC metric to evaluate test-performance, we present a
workflow for predicting the machine failures using
classification techniques such as random forests and
gradient boosting.
Keywords-assembly-line; MCC; random-forests;
gradient-boosting;

I. INTRODUCTION

Big manufacturing companies like Bosch, have an
imperative to ensure that the production is of high quality.
Part of doing so is closely monitoring its parts as they
progress through the manufacturing processes. Since Bosch
records data at every step along its assembly lines, they have
the ability to apply advanced analytics to improve these
manufacturing processes. However, the intricacies of the
data and complexities of the production line pose problems
for current methods.

Manufacturing companies are faced with the task of
predicting the internal failures using thousands of
measurements and tests made for each component along the
assembly line. This would enable the production company
to bring quality products at lower costs to the end user (by
minimizing human interventions).

The challenge is posed by the intricacy of the production
line data. Here we deal with a huge number of features with
highly skewed response variable as precisely we have 171
correct samples for every failure. Other than that we also
have to deal with multiple values for categorical features,
large number of missing values and a lot of duplicate values.
This required careful and repeated experiments during
pre-processing so that no information is overlooked while
presenting the findings of our model and also to make sure
that the model is computationally feasible for the
manufacturing firm to use over and over again.

In this report we’ll first demonstrate some interesting
findings that we came across while playing with data and

that later became useful while building the actual model,
then we’ll progressively build the model giving our insights
at every step and then finally we’ll conclude with our results
and possible extensions of this project.

II. RELATED WORKS/ FINDINGS

While deciding the statistics to create an error prediction
model using the given dataset, we should keep in mind that
the response variable is going to be either fail/pass or
possibly the number of failures in a time period. Logistic
Regression seems to be the most intuitive choice in this
case. However the independent variables are time dependent
and although there isn't any autocorrelation in the data,
errors that do occur tend to occur close together.

The literature developed by the "Six Sigma[10]" school of
manufacturing quality control is probably the single, best
source for applied significance testing of defects, for
looking into predicting product defects from on-line time
series data. ​The ​statistical representation​ of Six Sigma
describes quantitatively how a process is performing. To
achieve Six Sigma, a process must not produce more than
3.4 defects per million opportunities. A Six Sigma defect is
defined as anything outside of customer specifications. Six
Sigma is a measurement-based strategy for process
improvement and problem reduction completed through the
application of improvement projects. This is accomplished
through the use of two Six Sigma models: DMAIC and
DMADV.

● DMAIC (define, measure, analyze, improve,
control) is an improvement system for existing
processes falling below specification and looking
for incremental improvement.

● DMADV (define, measure, analyze, design, verify)
is an improvement system used to develop new
processor products at Six Sigma quality levels.

III. SYSTEM OVERVIEW

Bosch, provides a huge dataset , representing the 1

measurements of parts as they move through their
production lines. The goal is to predict whether a particular
part (identified by a unique Id) will fail quality control or

1 ​kaggle.com/c/bosch-production-line-performance/data

*please find larger and clearer images in Appendix

mailto:am4590@columbia.edu
mailto:ss5136@columbia.edu
mailto:vm2486@columbia.edu
https://www.isixsigma.com/new-to-six-sigma/statistical-six-sigma-definition/
https://www.kaggle.com/c/bosch-production-line-performance/data

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

not. For better storage and easier understanding of this huge
data, the data is separated into different files based on the
type of the feature they contain: namely numerical,
categorical and date features. Features are named such that
it depicts the production line, the station and the
corresponding feature number. For example: the feature
L3_S36_F3939, depicts the feature measured on line 3 at
station 36 and the feature number is 3939. A general
overview of the datasets sizes is shown in the following
table:

 File Size
(Zipped)

File Size
(Unzipped)

Rows Column

Categorical
(Train/Test)

20 MB 2.50 GB 118378 2141

Numeric
(Train/Test)

270 MB 2 GB 118378 1157

Date
(Train/Test)

59 MB 2.7 GB 118378 970

 It is a very challenging dataset because the ground truth is
highly imbalanced and also it is among the largest datasets
(in terms of the number of features) ever hosted on Kaggle.

Figure: General System Overview

IV. EVALUATION METRIC

Since the dataset is highly imbalanced with respect to the
response variable, (​171 correct samples for every failure), a
simple 0-1 loss would be meaningless. We use the
Matthews Correlation Coefficient (MCC)​[1], [2]​ as a
measure of the quality of the binary classifiers. MCC is
basically a correlation coefficient between the predicted and
observed classes. A coefficient of +1 represents a perfect
prediction, coefficient of 0 represents no better than random
prediction, while a coefficient of -1 signifies a total
disagreement between the predicted and observed values.

CC M = (TP TN) − (FP FN)* *
√(TP+FP)(TP+FN)(TN+FP)(TN+FN)

where TP stands for True Positives, TN stands for True
Negatives, FP stands for False Positives, FN stands for False
Negatives.

V. ALGORITHM

The training dataset is quite huge in itself, with a very large
number of features, thus it is very important to carefully
explore and understand the dataset. Since no prior
information about the features is known, we try to find
relevant relations between the features after exploring for
interesting informations in the dataset. After having gained
insights into the dataset, we chose the best set of features
that explain the dataset the most, and work on building our
classifier on the same.

A. Data Exploration

We tried to find relations between the different features, the
stations they are recorded on, the production line the station
is on, and the response variable corresponding to these
observations to understand which features, stations and lines
play more significant role than the others. Some of the
interesting dataset explorations are recorded here in this
report. Through Figure 1 and 2, we observe the frequency of
different features corresponding to the stations. We observe
that some stations (namely Station 24, 25, 29, 30) have a
very high number of features corresponding to them, while
they are many stations that have very low number of
features corresponding to them. These results do suggest
some relative importance of stations in identifying the
stations, which perhaps would play, a more important role in
deciding the response variable.

*please find larger and clearer images in Appendix

https://www.colwiz.com/cite-in-google-docs/cid=f20ec32f606b290+f20f5c52996642e

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

Figure 1

Figure 2

*Figure: Frequency of Features vs Station Number

We report similar trends for features with respect to
different lines (Figure 3 and 4), suggesting the relative
importance of one line over the other in deciding the
response variable. It could be interpreted logically that when
a product is probable to be defective, it is shifted to a line
where it undergoes more strict manufacturing tests. Thus
having more number of features being recorded for it.

Figure 3

Figure 4

In the Figure 5, we visualize the first 1000 jobs as they
progress through stations over the production lines. The
bigger the size of the node, the more the number of jobs
come into that station while similar colour nodes signify that
they lie on the same production line. From this visualization
we can get a rough intuition that the lines are somewhat
parallel and there seems to be some backup/overflow lines.

Figure 5

*Figure: A graphical representation of the first 1000 jobs

In Figure 6, we visualize the progress of a job over time as it
goes through different processing times. Colour represents
the line number the job is on at a particular instant of times.
The first two rows corresponds to 8 different jobs that
turned out to be faulty ones, while the bottom two rows
corresponds to jobs that were not faulty.

*Figure 6

*please find larger and clearer images in Appendix

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

*Figure: Progress of a job with respect to time

We also found out that the stations visited by faulty and non
faulty nodes varies. There are some stations that are more
frequented by faulty jobs, while there are some stations that
are more frequented by the non faulty jobs.

Figure 7

Figure: Graph depicting the movements of First 100
Faulty products from one station to another

Figure 8

Figure: Graph depicting the movements of First 100 Non
- Faulty products from one station to another

B. Feature Engineering
Building upon the insights gained in our initial explorations,
we could interpret that there is a smaller subset of features
that has a greater importance than the rest. Since the set of
possible features is very large, we try different methods for
dimensionality reduction. We used the domain knowledge
of the data to create features that were later used in the
classification procedure. ​Feature engineering is a crucial
step in our workflow because of the huge data size and
interesting inferences about their relative importance in
deciding the failure of a product.

Drawing upon the conclusions of previous work done on
this specific problem, we used Extreme Gradient
Boosting[11] (XGBoost) to extract the top 15 useful
features that dominated the results of any particular model.
XGBoost is an advanced algorithm built on Gradient
boosting.

We used XGBoost as it is faster and it implements parallel
processing. It’s implementation on Hadoop.XGBoost is a
regularised algorithm, thus making the chances of
overfitting lesser.
We developed our classification algorithms over these sets
of useful features.

Figure 9

Figure: Relative Importance of Features
The above plot, depicts the relative importance of various
features. The top 15 features that we found out on the basis
of our analysis are the following: (‘L3_S31_F3846',
'L1_S24_F1578', 'L3_S33_F3857', 'L1_S24_F1406',
'L3_S29_F3348', 'L3_S33_F3863', 'L3_S29_F3427',
'L3_S37_F3950', 'L0_S9_F170', ‘L3_S29_F3321',
'L1_S24_F1346', 'L3_S32_F3850', 'L3_S30_F3514',
'L1_S24_F1366', 'L2_S26_F3036'). In the top 15 features
we have 4 features corresponding to station 24, 3 features
for station 33. We also observe that features corresponding
to Line 1 and Line 3 are the most important ones. These
observations are very much in accordance with our earlier
data exploratory analysis.

C. Classification Algorithms
After having engineered the relevant features, we use the
conventional classification techniques from machine
learning namely: Naive Bayes Classifier, Multi-Layer
perceptron, Random Forests ​[3]​ and Gradient Boosting
(exponential) ​[4]​. Since we have a very large amount of data
(almost 7 GB of training data) and also a large number of
features, only those algorithms that can work on chunks of
data at a time, or/and in a distributive manner could be used
effectively. Random Forest and Gradient boosting seemed
to be the most suited algorithms for the classification task at
hand (we also had prior knowledge that these two models
give the best results, and their performance is comparable).

1. Random Forest ​[3]​ : ​An ensemble learning method
constructed using a multitude of​ decision trees​ at
training time. Each tree votes for a class and

*please find larger and clearer images in Appendix

https://www.colwiz.com/cite-in-google-docs/cid=f20eb6d6044147a
https://www.colwiz.com/cite-in-google-docs/cid=f20f8cdd57b861a
https://www.colwiz.com/cite-in-google-docs/cid=f20eb6d6044147a
https://en.wikipedia.org/wiki/Decision_tree_learning

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

response is assigned to data point based on
majority voting. Ensembles are a
divide-and-conquer approach used to improve
performance. The main principle behind ensemble
methods is that a group of “weak learners” can
come together to form a “strong learner”. Each
classifier, individually, is a “weak learner,” while
all the classifiers taken together are a “strong
learner”.

2. Gradient Boosting ​[4]​: Gradient boosting is also an
ensemble​ of weak prediction models, typically
decision trees​ that employs both gradient descent
and boosting. ​ ​I​t builds the model in a stage-wise
fashion like other ​boosting​ methods do, and it
generalizes them by allowing optimization of an
arbitrary ​differentiable​ ​loss function​.

As for the tools, we have used Spark, Python and R for
formulating the model design and running out experiments
and for visualisation and inference purposes, we have used
IBM System G Tools and Databricks platform. All these
tools are open source and we’ll present the general
description of the most relevant ones, namely Spark, System
G and Databricks in the next section.

VI. SOFTWARE PACKAGE DESCRIPTION

1. Python Scipy ​[5]​: ​SciPy is a Python-based
ecosystem of open-source software for
mathematics, science, and engineering.

2. Python Numpy ​[6]​: ​NumPy is the fundamental
package for scientific computing with Python. It
contains among other things:

○ a powerful N-dimensional array object
○ sophisticated (broadcasting) functions
○ tools for integrating C/C++ and Fortran

code
○ useful linear algebra, Fourier transform,

and random number capabilities

Besides its obvious scientific uses, NumPy can also
be used as an efficient multi-dimensional container
of generic data. Arbitrary data-types can be
defined. This allows NumPy to seamlessly and
speedily integrate with a wide variety of databases.

3. Python Pandas ​[7]​: ​pandas is an open source,
BSD-licensed library providing high-performance,
easy-to-use data structures and data analysis tools
for the ​Python​ programming language. Some
important Library Highlights:

○ A fast and efficient DataFrame object
for data manipulation with integrated
indexing;

○ Tools for reading and writing data
between in-memory data structures
and different formats: CSV and text
files, Microsoft Excel, SQL
databases, and the fast HDF5 format;

○ Intelligent data alignment and
integrated handling of missing data:
gain automatic label-based alignment
in computations and easily
manipulate messy data into an orderly
form;

○ Flexible reshaping and pivoting of
data sets;

○ Intelligent label-based slicing, fancy
indexing, and subsetting of large data
sets;

○ Columns can be inserted and deleted
from data structures for size
mutability;

○ Aggregating or transforming data
with a powerful group by engine
allowing split-apply-combine
operations on data sets;

○ High performance merging and
joining of data sets;

○ Hierarchical axis indexing provides
an intuitive way of working with
high-dimensional data in a
lower-dimensional data structure;

○ Time series-functionality: date range
generation and frequency conversion,
moving window statistics, moving
window linear regressions, date
shifting and lagging. Even create
domain-specific time offsets and join
time series without losing data;

○ Highly optimized for performance,
with critical code paths written in
Cython​or C.

○ Python with ​pandas​ is in use in a
wide variety of academic and
commercial domains, including
Finance, Neuroscience, Economics,
Statistics, Advertising, Web
Analytics, and more.

4. Databricks[8]:Databricks’ vision is to empower
anyone to easily build and deploy advanced
analytics solutions, a powerful open source data
processing engine built for sophisticated analytics,
ease of use, and speed. Databricks is the largest
contributor to the open source Apache Spark
project providing 10x more code than any other
company. Databricks provides a just-in-time data
platform, to simplify data integration, real-time

*please find larger and clearer images in Appendix

https://www.colwiz.com/cite-in-google-docs/cid=f20f8cdd57b861a
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Boosting_(meta-algorithm)
https://en.wikipedia.org/wiki/Differentiable_function
https://en.wikipedia.org/wiki/Loss_function
https://www.colwiz.com/cite-in-google-docs/cid=f20f67606495a0a
https://www.colwiz.com/cite-in-google-docs/cid=f2075399707fd28
https://www.colwiz.com/cite-in-google-docs/cid=f20f2ce5d744b52
http://www.python.org/
http://www.cython.org/

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

experimentation, and robust deployment of
production applications.

5. IBM System G[9]: I​BM System G is a
comprehensive set of ​Graph Computing Tools,
Cloud, and Solutions​ for Big Data. "G" stands for
graphs -- large or small, static or dynamic,
topological or semantic, and property or bayesian

VII. EXPERIMENT RESULTS

We report a 10 Fold Cross Validation MCC scores for each
of the classification algorithms, namely: Random Forests,
Gradient Boosting, LibSVM, SVM with RBF Kernel,
Gaussian Naive Bayes. Features for these classification
algorithms were chosen after the result of the feature
engineering test. The following table tabulates our results
over the chosen set of features and classifiers.

Figure 10

Figure: Snapshots of running spark scripts on databricks
platform

Classification Algorithm MCC Score (10 Fold Cross
Validation)

Random Forests 0.39768

Gradient Boosting 0.414255

LibSVM -8.37e-05

SVM with RBF Kernel 0.03225

Gaussian Naive Bayes 0.03370

Table: 10 Fold Cross Validation MCC
Scores of Different Classification Algorithms

VIII. CONCLUSION

Member Aayush
Mudgal
[am4590]

Sheallika
Singh
[ss5136]

Vibhuti
Mahajan
[vm2486]

Contribution
(Fraction)

1/3 1/3 1/3

 Table: Individual Member’s Contribution

1. Gradient Boosting and Random Forests give the
best and comparable results (largest MCC). Also
these methods are more suitable for working on a
big dataset because of relative ease with which the
algorithm can be broken into independent chunks
to be queued into a big data platform.

2. The probability of finding a defect after just seeing
a defect was calculated as 10.08% as compared to
the probability of finding a defect which is 0.52%.
It is thus more probable to find a defect, just after a
defect. This implies that the defected parts comes
in batches.

3. Some stations and lines have more importance in
deciding, suggesting the concept of backup lines,
and special lines to detect defects more closely.
This is clear from the system G visualisation (More
input channels into S_24 and S_25). During feature
selection we could give a concrete proof to our
beliefs as these stations were the main features
extracted while feature engineering

In the current implementation, we have ignored the
duplicate values completely, however we would like to
explore more about the importance of these values, and
develop a suitable ranking algorithm for combining them.

ACKNOWLEDGMENT

WE WOULD LIKE TO THANK PROFESSOR CHING YUNG LIN FOR HIS
INDELIBLE TEACHINGS AND ALL THE TA’S OF EECS6893 (FALL

2016) FOR THEIR CONSTANT GUIDANCE AND SUPPORT IN
COURSEWORK, ASSIGNMENTS AND PROJECT.

*please find larger and clearer images in Appendix

http://systemg.research.ibm.com/about.html
http://systemg.research.ibm.com/about.html

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

REFERENCES

[1] J. J. Bartko, “The intraclass correlation coefficient as a

measure of reliability,”​ Psychological Reports​ , vol. 19,
pp. 3–11, 1965.

[2] D. M. W. Powers, “Evaluation: From Precision, Recall
and F-Measure to ROC, Informedness, Markedness
& Correlation,”​ J. Mach. Learn. Technol.​ , vol. 2,
pp. 37–63, 2010.

[3] T. K. Ho, “Random Decision Forests,” in​ Intl. Conf. on
Document Analysis and Recognition (ICDAR)​ , 1994,
vol. 1.

[4] F. Jerome H, “Stochastic gradient boosting,”​ Comput.
Stat. & Data Anal.​ , vol. 38, pp. 367–378, Jan. 2002.

[5] E. Jones, T. Oliphant, and P. Peterson, “SciPy: Open
source scientific tools for Python,”
http://www.scipy.org/​ , 2000.

[6] T. Lindblad and J. M. Kinser, “NumPy, SciPy and
Python Image Library,” in​ Image Processing using
Pulse-Coupled Neural Networks​ , Springer

[7] W. McKinney,​ Python for Data Analysis: Data
Wrangling with Pandas, NumPy, and IPython​ . “
O’Reilly Media, Inc.,” 2011.

[8] https://databricks.com/
[9] http://systemg.research.ibm.com/
[10] Warren Brussee​, “Six SIGMA on a Budget: Achieving

More with Less Using the Principles of Six SIGMA”
[11] Friedman et al., “Greedy function Approximation: A

gradient Boosting Machine”, IMS 1999
[12] Link to Kaggle Challenge:

https://www.kaggle.com/c/bosch-production-line-perfor
mance

[13] Link to Kaggle Forums:
https://www.kaggle.com/c/bosch-production-line-perfor
mance/forums

*please find larger and clearer images in Appendix

https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://www.colwiz.com/cite-in-google-docs/cid=colwizBiblio
https://databricks.com/
http://systemg.research.ibm.com/
http://www.goodreads.com/author/show/4576.Warren_Brussee

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

APPENDIX [ENLARGED IMAGES]

Figure 1

*please find larger and clearer images in Appendix

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

Figure 2

*please find larger and clearer images in Appendix

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

Figure 3

*please find larger and clearer images in Appendix

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

Figure 4

Figure 5: A graphical representation of the first 1000 jobs

*please find larger and clearer images in Appendix

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

Help sought from: ​Kaggle Forums - JeffH

Figure 6: Progress of a job with respect to time

*please find larger and clearer images in Appendix

https://www.kaggle.com/mudgal/bosch-production-line-performance/visualize-part-history/run/543149/code

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

Figure 7 : Graph depicting the movements of First 100 Faulty products from one station to another

*please find larger and clearer images in Appendix

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

Figure 8: Graph depicting the movements of First 100 Non - Faulty products from one station to another

*please find larger and clearer images in Appendix

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

Figure 9

*please find larger and clearer images in Appendix

 Columbia University E6893 Big Data Analytics Fall 2014 Final Report

Figure 10

Snapshots of Running PySpark scripts on Databricks Platform

Figure 11

*please find larger and clearer images in Appendix

