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Abstract​ —​It is of high importance for big companies to 
maintain high quality of products. In this project we use 
the measurements of the parts of the appliances as they 
progress through an assembly- line to predict whether 
there would be a defect in the part. This will help 
companies to produce high quality, low cost products at 
the user end. Building upon inferences from data and an 
MCC metric to evaluate test-performance, we present a 
workflow for predicting the machine failures using 
classification techniques such as random forests and 
gradient boosting.  
Keywords-assembly-line; MCC; random-forests; 
gradient-boosting;  

I.  INTRODUCTION  

Big manufacturing companies like Bosch, have an       
imperative to ensure that the production is of high quality.          
Part of doing so is closely monitoring its parts as they           
progress through the manufacturing processes. Since Bosch       
records data at every step along its assembly lines, they have           
the ability to apply advanced analytics to improve these         
manufacturing processes. However, the intricacies of the       
data and complexities of the production line pose problems         
for current methods. 
 
Manufacturing companies are faced with the task of        
predicting the internal failures using thousands of       
measurements and tests made for each component along the         
assembly line. This would enable the production company        
to bring quality products at lower costs to the end user (by            
minimizing human interventions).  
 
The challenge is posed by the intricacy of the production 
line data. Here we deal with a huge number of features with 
highly skewed response variable as precisely we have 171 
correct samples for every failure. Other than that we also 
have to deal with multiple values for categorical features, 
large number of missing values and a lot of duplicate values. 
This required careful and repeated experiments during 
pre-processing so that no information is overlooked while 
presenting the findings of our model and also to make sure 
that the model is computationally feasible for the 
manufacturing firm to use over and over again.  
 
In this report we’ll first demonstrate some interesting 
findings that we came across while playing with data and 

that later became useful while building the actual model, 
then we’ll progressively build the model giving our insights 
at every step and then finally we’ll conclude with our results 
and possible extensions of this project.  

II. RELATED WORKS/ FINDINGS 

While deciding the statistics to create an error prediction 
model using the given dataset, we should keep in mind that 
the response variable is going to be either fail/pass or 
possibly the number of failures in a time period. Logistic 
Regression seems to be the most intuitive choice in this 
case. However the independent variables are time dependent 
and although there isn't any autocorrelation in the data, 
errors that do occur tend to occur close together.  
 
The literature developed by the "Six Sigma[10]" school of 
manufacturing quality control is probably the single, best 
source for applied significance testing of defects, for 
looking into predicting product defects from on-line time 
series data. ​The ​statistical representation​ of Six Sigma 
describes quantitatively how a process is performing. To 
achieve Six Sigma, a process must not produce more than 
3.4 defects per million opportunities. A Six Sigma defect is 
defined as anything outside of customer specifications. Six 
Sigma is a measurement-based strategy for process 
improvement and problem reduction completed through the 
application of improvement projects. This is accomplished 
through the use of two Six Sigma models: DMAIC and 
DMADV. 

● DMAIC (define, measure, analyze, improve, 
control) is an improvement system for existing 
processes falling below specification and looking 
for incremental improvement. 

● DMADV (define, measure, analyze, design, verify) 
is an improvement system used to develop new 
processor products at Six Sigma quality levels. 

 

III. SYSTEM OVERVIEW 

Bosch, provides a huge dataset , representing the 1

measurements of parts as they move through their 
production lines. The goal is to predict whether a particular 
part (identified by a unique Id) will fail quality control or 

1 ​kaggle.com/c/bosch-production-line-performance/data 

*please find larger and clearer images in Appendix  
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not. For better storage and easier understanding of this huge 
data, the data is separated into different files based on the 
type of the feature they contain: namely numerical, 
categorical and date features. Features are named such that 
it depicts the production line, the station and the 
corresponding feature number. For example: the feature 
L3_S36_F3939, depicts the feature measured on line 3 at 
station 36 and the feature number is 3939. A general 
overview of the datasets sizes is shown in the following 
table: 

 File Size 
(Zipped) 

File Size  
(Unzipped) 

Rows Column 

Categorical 
(Train/Test) 

20 MB 2.50 GB 118378 2141 

Numeric 
(Train/Test) 

270 MB 2 GB 118378 1157 

Date 
(Train/Test) 

59 MB 2.7 GB 118378 970 

 

 It is a very challenging dataset because the ground truth is 
highly imbalanced and also it is among the largest datasets 
(in terms of the number of features) ever hosted on Kaggle. 

 

Figure: General System Overview 

 
 

IV. EVALUATION METRIC 

Since the dataset is highly imbalanced with respect to the 
response variable, (​171 correct samples for every failure), a 
simple 0-1 loss would be meaningless. We use the 
Matthews Correlation Coefficient (MCC)​[1], [2]​ as a 
measure of the quality of the binary classifiers. MCC is 
basically a correlation coefficient between the predicted and 
observed classes. A coefficient of +1 represents a perfect 
prediction, coefficient of 0 represents no better than random 
prediction, while a coefficient of -1 signifies a total 
disagreement between the predicted and observed values.  
 

CC M =  (TP TN ) − (FP FN )* *
√(TP+FP )(TP+FN )(TN+FP )(TN+FN )  

 
where TP stands for True Positives, TN stands for True 
Negatives, FP stands for False Positives, FN stands for False 
Negatives. 
 

V. ALGORITHM 

The training dataset is quite huge in itself, with a very large 
number of features, thus it is very important to carefully 
explore and understand the dataset. Since no prior 
information about the features is known, we try to find 
relevant relations between the features after exploring for 
interesting informations in the dataset. After having gained 
insights into the dataset, we chose the best set of features 
that explain the dataset the most, and work on building our 
classifier on the same.  
 

A. Data Exploration 
 
We tried to find relations between the different features, the 
stations they are recorded on, the production line the station 
is on, and the response variable corresponding to these 
observations to understand which features, stations and lines 
play more significant role than the others. Some of the 
interesting dataset explorations are recorded here in this 
report. Through Figure 1 and 2, we observe the frequency of 
different features corresponding to the stations. We observe 
that some stations (namely Station 24, 25, 29, 30) have a 
very high number of features corresponding to them, while 
they are many stations that have very low number of 
features corresponding to them. These results do suggest 
some relative importance of stations in identifying the 
stations, which perhaps would play, a more important role in 
deciding the response variable.  

*please find larger and clearer images in Appendix  
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Figure 1 

 
Figure 2 

*Figure: Frequency of Features vs Station Number 
 
We report similar trends for features with respect to 
different lines (Figure 3 and 4), suggesting the relative 
importance of one line over the other in deciding the 
response variable. It could be interpreted logically that when 
a product is probable to be defective, it is shifted to a line 
where it undergoes more strict manufacturing tests. Thus 
having more number of features being recorded for it.  
 

 

Figure 3 

 
Figure 4 

 
 
In the Figure 5, we visualize the first 1000 jobs as they 
progress through stations over the production lines. The 
bigger the size of the node, the more the number of jobs 
come into that station while similar colour nodes signify that 
they lie on the same production line. From this visualization 
we can get a rough intuition that the lines are somewhat 
parallel and there seems to be some backup/overflow lines.  

 
Figure 5 

*Figure: A graphical representation of the first 1000 jobs 
 
In Figure 6, we visualize the progress of a job over time as it 
goes through different processing times. Colour represents 
the line number the job is on at a particular instant of times. 
The first two rows corresponds to 8 different jobs that 
turned out to be faulty ones, while the bottom two rows 
corresponds to jobs that were not faulty.  
 

 
*Figure 6 

*please find larger and clearer images in Appendix  
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*Figure: Progress of a job with respect to time  
 

We also found out that the stations visited by faulty and non 
faulty nodes varies. There are some stations that are more 
frequented by faulty jobs, while there are some stations that 
are more frequented by the non faulty jobs. 
 

 
Figure 7 

Figure: Graph depicting the movements of First 100 
Faulty products from one station to another 
 

 
Figure 8 

Figure: Graph depicting the movements of First 100 Non 
- Faulty products from one station to another 
 

B. Feature Engineering 
Building upon the insights gained in our initial explorations, 
we could interpret that there is a smaller subset of features 
that has a greater importance than the rest. Since the set of 
possible features is very large, we try different methods for 
dimensionality reduction. We used the domain knowledge 
of the data to create features that were later used in the 
classification procedure. ​Feature engineering is a crucial 
step in our workflow because of the huge data size and 
interesting inferences about their relative importance in 
deciding the failure of a product. 
 
Drawing upon the conclusions of previous work done on 
this specific problem, we used Extreme Gradient 
Boosting[11] (XGBoost) to extract the top 15 useful 
features that dominated the results of any particular model. 
XGBoost is an advanced algorithm built on  Gradient 
boosting. 

We used XGBoost as it is faster and it implements parallel 
processing. It’s implementation on Hadoop.XGBoost is a 
regularised algorithm, thus making the chances of 
overfitting lesser. 
We developed our classification algorithms over these sets 
of useful features. 

 
Figure 9 

Figure: Relative Importance of Features 
The above plot, depicts the relative importance of various 
features. The top 15 features that we found out on the basis 
of our analysis are the following: (‘L3_S31_F3846', 
'L1_S24_F1578', 'L3_S33_F3857', 'L1_S24_F1406', 
'L3_S29_F3348',  'L3_S33_F3863',  'L3_S29_F3427', 
'L3_S37_F3950', 'L0_S9_F170', ‘L3_S29_F3321', 
'L1_S24_F1346', 'L3_S32_F3850',       'L3_S30_F3514', 
'L1_S24_F1366', 'L2_S26_F3036'). In the top 15 features 
we have 4 features corresponding to station 24, 3 features 
for station 33. We also observe that features corresponding 
to Line 1 and Line 3 are the most important ones. These 
observations are very much in accordance with our earlier 
data exploratory analysis.  
 
 

C. Classification Algorithms 
After having engineered the relevant features, we use the 
conventional classification techniques from machine 
learning namely: Naive Bayes Classifier, Multi-Layer 
perceptron, Random Forests ​[3]​ and Gradient Boosting 
(exponential) ​[4]​. Since we have a very large amount of data 
(almost 7 GB of training data) and also a large number of 
features, only those algorithms that can work on chunks of 
data at a time, or/and in a distributive manner could be used 
effectively.  Random Forest and Gradient boosting seemed 
to be the most suited algorithms for the classification task at 
hand (we also had prior knowledge that these two models 
give the best results, and their performance is comparable).  

1. Random Forest ​[3]​ : ​An ensemble learning method 
constructed using a multitude of​ decision trees​ at 
training time. Each tree votes for a class and 

*please find larger and clearer images in Appendix  
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response is assigned to data point based on 
majority voting. Ensembles are a 
divide-and-conquer approach used to improve 
performance. The main principle behind ensemble 
methods is that a group of “weak learners” can 
come together to form a “strong learner”. Each 
classifier, individually, is a “weak learner,” while 
all the classifiers taken together are a “strong 
learner”. 

2. Gradient Boosting ​[4]​: Gradient boosting is also an 
ensemble​ of weak prediction models, typically 
decision trees​ that employs both gradient descent 
and boosting. ​ ​I​t builds the model in a stage-wise 
fashion like other ​boosting​ methods do, and it 
generalizes them by allowing optimization of an 
arbitrary ​differentiable​ ​loss function​.  

 
As for the tools, we have used Spark, Python and R for 
formulating the model design and running out experiments 
and for visualisation and inference purposes, we have used 
IBM System G Tools and Databricks platform. All these 
tools are open source and we’ll present the general 
description of the most relevant ones, namely Spark, System 
G and Databricks in the next section. 

VI. SOFTWARE PACKAGE DESCRIPTION 

1. Python Scipy ​[5]​: ​SciPy is a Python-based 
ecosystem of open-source software for 
mathematics, science, and engineering.  

2. Python Numpy ​[6]​: ​NumPy is the fundamental 
package for scientific computing with Python. It 
contains among other things: 

○ a powerful N-dimensional array object 
○ sophisticated (broadcasting) functions 
○ tools for integrating C/C++ and Fortran 

code 
○ useful linear algebra, Fourier transform, 

and random number capabilities 

Besides its obvious scientific uses, NumPy can also 
be used as an efficient multi-dimensional container 
of generic data. Arbitrary data-types can be 
defined. This allows NumPy to seamlessly and 
speedily integrate with a wide variety of databases. 

3. Python Pandas ​[7]​: ​pandas is an open source, 
BSD-licensed library providing high-performance, 
easy-to-use data structures and data analysis tools 
for the ​Python​ programming language. Some 
important Library Highlights:  

○ A fast and efficient DataFrame object 
for data manipulation with integrated 
indexing; 

○ Tools for reading and writing data 
between in-memory data structures 
and different formats: CSV and text 
files, Microsoft Excel, SQL 
databases, and the fast HDF5 format; 

○ Intelligent data alignment and 
integrated handling of missing data: 
gain automatic label-based alignment 
in computations and easily 
manipulate messy data into an orderly 
form; 

○ Flexible reshaping and pivoting of 
data sets; 

○ Intelligent label-based slicing, fancy 
indexing, and subsetting of large data 
sets; 

○ Columns can be inserted and deleted 
from data structures for size 
mutability; 

○ Aggregating or transforming data 
with a powerful group by engine 
allowing split-apply-combine 
operations on data sets; 

○ High performance merging and 
joining of data sets; 

○ Hierarchical axis indexing provides 
an intuitive way of working with 
high-dimensional data in a 
lower-dimensional data structure; 

○ Time series-functionality: date range 
generation and frequency conversion, 
moving window statistics, moving 
window linear regressions, date 
shifting and lagging. Even create 
domain-specific time offsets and join 
time series without losing data; 

○ Highly optimized for performance, 
with critical code paths written in 
Cython​or C. 

○ Python with ​pandas​  is in use in a 
wide variety of academic and 
commercial domains, including 
Finance, Neuroscience, Economics, 
Statistics, Advertising, Web 
Analytics, and more. 

4. Databricks[8]:Databricks’ vision is to empower 
anyone to easily build and deploy advanced 
analytics solutions, a powerful open source data 
processing engine built for sophisticated analytics, 
ease of use, and speed. Databricks is the largest 
contributor to the open source Apache Spark 
project providing 10x more code than any other 
company. Databricks provides a just-in-time data 
platform, to simplify data integration, real-time 

*please find larger and clearer images in Appendix  
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experimentation, and robust deployment of 
production applications. 

5. IBM System G[9]: I​BM System G is a 
comprehensive set of ​Graph Computing Tools, 
Cloud, and Solutions​ for Big Data. "G" stands for 
graphs -- large or small, static or dynamic, 
topological or semantic, and property or bayesian 

 

VII. EXPERIMENT RESULTS 

We report a 10 Fold Cross Validation MCC scores for each 
of the classification algorithms, namely: Random Forests, 
Gradient Boosting, LibSVM, SVM with RBF Kernel, 
Gaussian Naive Bayes. Features for these classification 
algorithms were chosen after the result of the feature 
engineering test.  The following table tabulates our results 
over the chosen set of features and classifiers.  
 

 

 
Figure 10 

Figure: Snapshots of running spark scripts on databricks 
platform 

Classification Algorithm MCC Score (10 Fold Cross 
Validation) 

Random Forests 0.39768 

Gradient Boosting 0.414255 

LibSVM -8.37e-05 

SVM with RBF Kernel 0.03225 

Gaussian Naive Bayes 0.03370 

Table: 10 Fold Cross Validation MCC 
Scores of Different Classification Algorithms 

 

 

VIII. CONCLUSION 
 

Member Aayush 
Mudgal 
[am4590] 

Sheallika 
Singh 
[ss5136] 

Vibhuti 
Mahajan 
[vm2486] 

Contribution 
(Fraction) 

1/3 1/3 1/3 

       Table: Individual Member’s Contribution 
 

1. Gradient Boosting and Random Forests give the 
best and comparable results (largest MCC). Also 
these methods are more suitable for working on a 
big dataset because of relative ease with which the 
algorithm can be broken into independent chunks 
to be queued into  a big data platform.  

2. The probability of finding a defect after just seeing 
a defect was calculated as 10.08% as compared to 
the probability of finding a defect which is 0.52%. 
It is thus more probable to find a defect, just after a 
defect. This implies that the defected parts comes 
in batches. 

3. Some stations and lines have more importance in 
deciding, suggesting the concept of backup lines, 
and special lines to detect defects more closely. 
This is clear from the system G visualisation (More 
input channels into S_24 and S_25). During feature 
selection we could give a concrete proof to our 
beliefs as these stations were the main features 
extracted while feature engineering 

 
In the current implementation, we have ignored the 
duplicate values completely, however we would like to 
explore more about the importance of these values, and 
develop a suitable ranking algorithm for combining them.  
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APPENDIX [ENLARGED IMAGES] 

  
 

Figure 1 

*please find larger and clearer images in Appendix  
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Figure 2 

*please find larger and clearer images in Appendix  
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Figure 3 
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Figure 4 

 
 
 
 

Figure 5: A graphical representation of the first 1000 jobs 
 

 

*please find larger and clearer images in Appendix  
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Help sought from: ​Kaggle Forums - JeffH  
 

Figure 6:  Progress of a job with respect to time 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*please find larger and clearer images in Appendix  
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Figure 7 : Graph depicting the movements of First 100 Faulty products from one station to another 
 
 
 
 
 
 
 
 
 
 
 
 
 

*please find larger and clearer images in Appendix  
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Figure 8: Graph depicting the movements of First 100 Non - Faulty products from one station to another 

*please find larger and clearer images in Appendix  
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Figure 9 

*please find larger and clearer images in Appendix  
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Figure 10 

 
Snapshots of Running PySpark scripts on Databricks Platform  

Figure 11 

*please find larger and clearer images in Appendix  


