
Classification of objects from Video Data (Group 30)

Sheallika Singh
12665

Vibhuti Mahajan
12792

Aahitagni Mukherjee
12001

M Arvind
12385

1 Motivation

Video surveillance has been employed for a long time to monitor security sensitive areas such as
banks, department stores, highways, crowded public places and borders. The increase in the number
of cameras in ordinary surveillance systems has overloaded the human operators with high volumes
of data and made it infeasible to ensure human monitoring of sensitive areas for long times. In order
to improve the response time to forensic events, assisting the human operators with identification
of important events in video by the use of smart video surveillance systems has become a critical
requirement. ”Smart” video surveillance systems requires fast, reliable and robust algorithms for
object detection and classification.

2 Aim

Using the IIT Kanpur Surveillance Video Dataset, we aim to build different classification models that
detect objects of interest and correctly classifies between a person, a car, a cycle, and a motorcycle.

3 Data Preprocessing

The VATIC data in video format was split in frames. Since consecutive frames depicted almost the
same objects, frames were picked at an interval of 15 for further processing. Using the labelled data
for training set or object detection methods for testing set the images of the objects were cropped.
These cropped images were then resized (64 × 128) and also gray scaled before features were
extracted from these images.

4 Object Detection

For detecting vehicles and pedestrians from individual frames, 2 techniques were used:

• background-foreground separation
• region based CNN.

On an average the RCNN method performed better than background-foreground separation method
and was used for further processing.

4.1 Background-Foreground Separation

The built-in cv2.createBackgroundSubtractorMOG2() function of OpenCV with default options was
applied on the frames for separating the objects from the background.

It uses a method to model each background pixel by a mixture of K Gaussian distributions (K = 3
to 5). The weights of the mixture represent the time proportions that those colours stay in the scene.
The probable background colours are the ones which stay longer and more static. This model is
the same as has been described in the paper ”An improved adaptive background mixture model for
real-time tracking with shadow detection” by P. KadewTraKuPong and R. Bowden [2].

1



4.2 Region-based Convolutional Neural Networks

The system used is the same as in the paper ”Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks” by Shaoqing Ren et al.(NIPS 2015) [4].

The system consists of three modules. The first generates category-independent region proposals.
These proposals define the set of candidate detections available to the detector. The second module
is a large convolutional neural network that extracts a fixed-length feature vector from each region.
The third module is a set of class-specific linear SVMs.

Selective Search algorithm is used to generate category-independent region proposals. A 4096-
dimensional feature vector is extracted from each region proposal using the Caffe implementa-
tion(https://github.com/rbgirshick/py-faster-rcnn) of the CNN. Features are
computed by forward propagating a mean-subtracted 227 × 227 RGB image through five convo-
lutional layers and two fully connected layers.

In order to compute features for a region proposal, the image data in that region is converted into a
form that is compatible with the CNN (its architecture requires inputs of a fixed 227 227 pixel size).
All pixels are warped in a tight bounding box around it to the required size. Prior to warping, the
tight bounding box is dilated so that at the warped size there are exactly p pixels of warped image
context around the original box (p = 16).

At test time, selective search is run on the test image to extract around 2000 region proposals (se-
lective searchs fast mode). Each proposal is warped and forward propagated through the CNN in
order to read off features from the desired layer. Then, for each class, each extracted feature vec-
tor is scored using the SVM trained for that class. Given all scored regions in an image, a greedy
non-maximum suppression (for each class independently) is applied, that rejects a region if it has
an intersection-over-union (IoU) overlap with a higher scoring selected region larger than a learned
threshold.

4.3 Comparison

2

https://github.com/rbgirshick/py-faster-rcnn


A visual comparison between the 2 methods for 2 different frames has been shown above. It is no-
ticeable that the RCNN differentiates overlapping objects more clearly than Background-Foreground
separation. Some objects moving together were detected in one box.

5 Feature Extraction

After the objects are detected the images of objects are cropped and features are extracted from the
cropped images. 3 types of features were extracted and used separately from the detected objects,
for the task of classification. These are

• Histogram of Oriented gradients(HOG) [1]
• Dense Scale Invariant Feature Transform(D-SIFT)
• BVLC-Alexnet Convolutional Neural Network

5.1 HOG feature extraction

The histogram of oriented gradients (HOG) [1] is a feature descriptor that uses occurrences of gra-
dient orientation in localized portions of an image.The steps are described as follows.

First, in the image, the centred horizontal and vertical gradients are computed with no smoothing.
The gradient orientations and magnitudes are calculated separately. In color image, for each pixel,
the color channel with the highest gradient magnitude is taken. The filter masks for centred gradient
are (−1, 0, 1) and (−1, 0, 1)T .

Then the image is divided into overlapping blocks and gradient orientations are quantized. For
example, for a 64 × 128 image, it it divided into 16 × 16 blocks of 50% overlap, which gives
7× 15 = 105 blocks in total. Each block consists of 2x2 cells with size 8x8.

The gradient orientations are then quantized into 9 bins. The gradient magnitude is taken as the vote,
which is also weighted with Gaussian to downweight the pixels near the edges of the block. The
votes are interpolated bi-linearly between neighboring bin centers.

Finally, the histograms are concatenated to get a 1D feature vector of dimension 105×4×9 = 3780

3



5.2 DSIFT feature

A SIFT feature is a selected image region (also called keypoint) with an associated descriptor. A
SIFT keypoint is a circular image region with an orientation. It is described by a geometric frame of
four parameters: the keypoint center coordinates x and y, its scale (the radius of the region), and its
orientation (an angle expressed in radians).

Searching keypoints at multiple scales is obtained by constructing a so-called Gaussian scale space.
The scale space is just a collection of images obtained by progressively smoothing the input image,
which is analogous to gradually reducing the image resolution.

Keypoints are further refined by eliminating those that are likely to be unstable, either because they
are selected nearby an image edge, rather than an image blob, or are found on image structures with
low contrast.

A SIFT descriptor is a 3-D spatial histogram of the image gradients in characterizing the appearance
of a keypoint. The gradient at each pixel is regarded as a sample of a three-dimensional elementary
feature vector, formed by the pixel location and the gradient orientation.

Samples are weighed by the gradient norm and accumulated in a 3-D histogram h, which (up to nor-
malization and clamping) forms the SIFT descriptor of the region. An additional Gaussian weighting
function is applied to give less importance to gradients farther away from the keypoint center. Ori-
entations are quantized into eight bins and the spatial coordinates into four each, as follows:

D SIFT1 module implements a fast algorithm for the calculation of a large number of SIFT descrip-
tors of densely sampled features of the same scale and orientation. Based on SIFT algorithm, dense
SIFT makes some new assumptions:

• The location of each keypoint is not from the gradient feature of the pixel, but from a
predesigned location

• The scale of each keypoint is all the same which is also predesigned

• The orientation of each keypoint is always zero.

With this assumptions, DSIFT can acquire more feature in less time than SIFT does.

1D SIFT features were extracted using the modified implementation of http://www.vlfeat.org/
overview/dsift.html for python language

4

http://www.vlfeat.org/overview/dsift.html
http://www.vlfeat.org/overview/dsift.html


5.3 CNN feature extraction

Features were extracted from the penultimate layer of the pre-trained Caffe model of a convolutional
neural netwok.BVLC AlexNet [3] is trained on LSVRC-2010 ImageNet training set consisting of
1.2 million images.

The net contains eight layers with weights; the first five are convolutional and the remaining three
are fullyconnected. The output of the last fully-connected layer is fed to a 1000-way softmax which
produces a distribution over the 1000 class labels.

This network maximizes the multinomial logistic regression objective, which is equivalent to maxi-
mizing the average across training cases of the log-probability of the correct label under the predic-
tion distribution.

The kernels of the second, fourth, and fifth convolutional layers are connected only to those kernel
maps in the previous layer which reside on the same GPU. The kernels of the third convolutional
layer are connected to all kernel maps in the second layer. The neurons in the fullyconnected layers
are connected to all neurons in the previous layer. Response-normalization layers follow the first
and second convolutional layers. Max-pooling layers follow both response-normalization layers
as well as the fifth convolutional layer. The ReLU non-linearity is applied to the output of every
convolutional and fully-connected layer.

The first convolutional layer filters the 224×224×3 input image with 96 kernels of size 11×11×3
with a stride of 4 pixels. The second convolutional layer takes as input the (response-normalized and
pooled) output of the first convolutional layer and filters it with 256 kernels of size 5× 5× 48. The
third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 × 3 ×
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 × 3 × 192 , and the fifth convolutional layer has 256
kernels of size 3× 3× 192. The fully-connected layers have 4096 neurons each. The architecture is
depicted below.

6 Classification

For classifying the detected objects in 4 classes, different classifiers were used:

• Logistic Regression

• Support Vector Machine

• Random Forest

• Adaboost (with base classifiers are decision stumps)

5



6.1 Classification with HOG features

The confusion matrix corresponding to each model fitted using HOG features is depicted below. The
y-axis is for the actual class ans x-axis for predicted class.

• class 0 is for bicycle
• class 1 is for car
• class 2 is for Motorbike
• class 3 is for person
• Rickshaw was not included as one of the classes and for training model because of the very

less number of images extracted from video.

From the resulting confusion matrix it can be seen that all the models except the adaboost classifier.
We also observed that wherever the object is being classified incorrectly it is the car being predicted
as motorbike.

RandomForest SVM

Logistic Reg AdaBoost

6



6.2 Classification with DSIFT features

Classes are the same as defined for the HOG. Similar results were observed for the models trained
on the D-SIFT features. Linear SVM and Adaboost classifier were not that accurate in classifying
car correctly.

RandomForest SVM

Logistic Reg AdaBoost

6.3 Classification with AlexNet penultimate layer features

We received the best results for AlexNet features among all other feature extraction techniques that
we have used. The only backdraw for using AlexNet was that it required GPU due to large memory
space requirements.

7



RandomForest SVM

Logistic Reg AdaBoost

6.4 Accuracy Table

Model HOG PHOW Alexnet
Logistic Regression 85.62 89.50 90.75

SVM 82.62 79.37 90.25
Kernel SVM 86.63 91.25 90.13

Random Forest 83.37 88.5 91.75
Adaboost 72.25 73.75 83.25

6.5 Kernel SVM

Due to the high rate of misclassification for linear SVM for D-SIFT features, we tried to incorporate
non-linearity in the model by taking a gaussian kernel. There were significant improvements in the
classification accuracy as depicted in the tables below.

8



HOG D-SIFT

AlexNet

6.6 Adding noise to the data

We also tried adding noise to the training data to make models more robust, but adding noise doesn’t
improve the accuracy. So we did not proceed further with it after 2 models.

9



Figure 1: SVM trained on noisy data

Figure 2: Random Forest trained on noisy data

References
[1] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In Computer

Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on,
volume 1, pages 886–893. IEEE, 2005.

[2] P. KaewTraKulPong and R. Bowden. An improved adaptive background mixture model for
real-time tracking with shadow detection. In Video-based surveillance systems, pages 135–144.
Springer, 2002.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

[4] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards real-time object detection with
region proposal networks. In Advances in Neural Information Processing Systems, pages 91–99,
2015.

10


	Motivation
	Aim
	Data Preprocessing
	Object Detection
	Background-Foreground Separation
	Region-based Convolutional Neural Networks
	Comparison

	Feature Extraction
	HOG feature extraction
	DSIFT feature
	CNN feature extraction

	Classification
	Classification with HOG features
	Classification with DSIFT features
	Classification with AlexNet penultimate layer features
	Accuracy Table
	Kernel SVM
	Adding noise to the data


