Non Linear Classification using Kernel Methods

Aayush Mudgal Sheallika Singh
12008 12665

Abstract

Linear Models are not rich enough to capture many of the real-world patterns and
it is often desired to capture non-linear patterns in the data. We briefly look to-
wards Support Vector Machines and Nearest Neighbors as Classification methods,
that can be kernelized. We also look at different formulations of SVM’s, namely
C-SVM and nu-SVM. We depict the wide applicability and ease of Kernel SVMs
through real-world problems like in face detection, handwritten character detec-
tion, spam/non-spam classification.

1 Introduction

Kernel based methods have shown significant success in classification, regression as well as unsu-
pervised learning problems. Kernel-based algorithms have shown to be successful in a wide area
of applications including in the context of object detection, gene expression, handwritten character
recognition, spam mail detection, textual classification([5][4][9][7][6]]. In Many of the classifica-
tions problems, the classes may not be linearly separable. Clearly linear algorithms tend to give
poor results in these tasks.However Kernel Methods (wherever applicable), makes linear model
work in non-linear settings. Such a mapping of data to a higher dimensions using kernel functions,
helps to exhibit linear patterns in this higher dimension. It is also shown that different kernel meth-
ods for classification can be reduced to optimization of a convex cost function. We primarily look at
two cases of Suport Vector Machines [3]], namely C-SVM and Nu-SVM, and their Kernel counter-
parts.We also look at other non-linear classifier K-nearest neighbors and its kernelised version.

2 Main Body

2.1 Non-Linear Algorithms in Kernel Feature Spaces

In most of the practical cases the Learning Set(£) is not linearly separable in the input space. Ker-
nel functions essentially help to map the input space ¢ : X — F by a non-linear mapping ¢ to
another feature space F. F is usually of much higher dimension than the input space. Such higher
dimensional representation of the input vectors, may result in vectors being linearly separated in the
mapped feature space. The idea is thus to learn develop the classifier in this feature space.

Kernel Trick: Any Learning algorithm that works entirely with inner products can be kernel-
ized. A valid Kernel mapping |'} allows to work in the Feature space without explicitly requiring
to calculate the vector representation in the Feature space (F). The easy computation of the kernel
function (as it is in terms of inner products), helps to keep the computational complexity of the
algorithm in check and most often kernelization comes at a very little overhead. Kernel trick thus
allows us to get the effect of working in F through a non-linear mapping where it might be possible
to develop linear algorithms. Since a kernel function is quite similar to just an inner product, it can
be visualized as a similarity metric. Such a visualization is quite common specially in the case of

'k: XzX — Ris a valid kernel iff Vz,y € X, k(x,y) = (¢(x), #(y)), where ¢ : X — F, where Fis a
valid inner product space

structured data (textual data, graphical data). Still the major tasks that remains is while choosing the
right type of the algorithm. Radial Basis Function (rbf)Ef Polynomlaﬂ Linear are some of the most
common types of kernels.

2.2 SVM Formulation (Separable Case)

Given an instance of Learning Set £ given by {(z;,y;)|i = l.n,z; € X,y; € {—1,1}}, the
support vector machines (SVM)[3] tries to maximize the margin.Separating hyperplane is in the
midway between the margin planes. Maximising the margin we get convex optimization problem
for which the dual problem is as follows:

mm E E ;05 Y Y (T, T5) g Q;

i=1 j=1
sta; > 1,Vi € {1n}

n
> aiyi=0
i=1

From Strong duality, the primal and dual problems have the same solution. Thus solving the dual
problem (a convex optimization problem) gives us the optimal solution &*. The separating hyper-
plane can be recalculated as follows: w* = Y7 | &;*y; *x;. Complementary slackness condition is
used to find the optimal w, which is given by w(, = y; — >, oy} (x;, z;), for some j satisfying
a; >0

2.3 C-SVM Formulation (Non-Separable Case)

As observed in Section (??), the Normal SVM algorithm makes a very strong assumption that the
learning set is linearly separable. However such an assumption normally does not hold in practical
purposes. Therefore C-SVM a modification of the normal SVM is more popularly used. As it
relaxes the condition that y;g(x;) > 1,Vi € {1..n}. With the introduction of slack variables the
constraint is modified as, y;9(x;) > 1 —§;,Vi € {l..n}and¢; > 0. Such a modification allows
to give some penalties for mis-classification. The regular correctly classified vectors that are on the
margin and beyond are represented by y;g(x;) > 1 and & = 0. Points that are correctly classified
but between the margin are represented by 0 < y;g(x;) < 1,and 0 < &; < 1, while the misclassified
points are represented by y;g(z;) < 0 and &; > 1 The C-SVM requires the solution of the following
convex optimization problem given by Equation (2.3). C is a regularization parameter (which is
tuned through cross-validation). Regularization parameter acts as a balance between widening the
margin and allowing misclassified and margin points. A small C favors a larger margin. C=0, is
equivalent to the normal svm problem.

min M +C Zn:&
w,we,6 2 —

fi >Vie {1n}(zz,yz) el

~
=
=
5*?
8B
[

ex (Y|z —=x || ?) is a general case rbf kernel
K (x,) (z” z + c)% is a general case polynomial kernel of degree d

The dual problem of Equation @]) is given as follows:

mm E E 0G0y (T, T5) E Q;

i=1 j=1
st0<a; <C,Vie {1n}

n
Z a;y; =0
i—1

From strong duality the solution to the dual problem gives the solution to the primal problem. Hence
the separating hyper-plane can be calculated from the solution of the dual problem as follows.

n
w* = Zdi*yi * T
i=1
From the application of KKT conditions it follows that
wh =y — Y ofyy (@i, ;)
forsomej,s.t.0 < o; <1

2.4 Nu-SVM Formulation

v-SVC([2],[8]]) is a variant of the soft margin problem of finding the optimal hyperplane [8]]. Here
parameter C is replaced by a parameter v € [0, 1] which is the lower and upper bound on the number
of examples that are support vectors and that lie on the wrong side of the hyperplane, respectively.
In case of C-SVM, C could have taken any real positive value, as opposed to the additional bound
here. We get a quadratic optimization problem as a dual problem which can be kernelised in the
similar manner as C-SVC (shown later in section

Proposition:(Connection between C-SVC and v-SVC[1][8DIf »-SVC leads to p > 0, then C-
SVC, with C set a priori to 1/mp, leads to the same decision function. Despite the bound on the
number of support vectors, v SVM is difficult to optimize and thus not very suitable for big datasets.

2.4.1 Kernelization of SVM and C-SVM and »-SVM

Both SVM and C-SVM can be solved by solving the corresponding dual problems. The dual prob-
lem is almost similar to that of the Normal SVM problem, except that «; is bounded above by the
regularization parameter. Input feature vectors, i.e. + € & occur in the dual optimization problem
in the form of inner products. Hence the dual optimization problem can be kernalized in case of
both SVM and C-SVM. The inner product (z;, z;) would be replaced by (¢(z;), #(x;)), if the input
space is mapped to a RKHS feature space F, where the mapping is satisfied by some kernel function
K. The Kernel Trick allows us to simplify the inner product (¢(x;), ¢(x;)) by K (z;, xr. However
the algorithm can be kernelized only if the input vectors appear in the form of inner products also
during the prediction step. In both the formulations any test vector x is given a label by:

sgn(w*x + wo)

= sgn(Y_ ajyi((x:), 8())

i=1

= 39”(2 o yi (K (2, x)
i=1
Hence both the optimization problem and the decision function can be written in terms of only inner
product of input space vectors, both SVM and C-SVM can be kernelized

3 Kernel Nearest neighbor[10]

In the k-nearest neighbor a query point is classified by finding the k closest neighbors (w.r.t. distance
between the and query point) and then assigning the majority label among these k points to the

query point. The norm distance, which is used in k-nearest neighbor algorithm, can be denoted as:
d(z,y) = [l =yl

The square of norm distance can be written as: d?(z,y) = (z,z) — 2 x (z,y) + (y,y)

This square of norm distance can be written in form of inner product and thus we can use ’Kernel
Trick’ to kernelise k-nearest neighbor algorithm.

4 Simulation/Results

4.0.1 Spam-Non Spam Dataset

This is a 2-class dataset consisting of about 2800 e-mail messages with text,and subject. Each of
which is classified into spam (480) or non-spam messages. The 2-D visualization plots for different
Kernel functions variations over the basic C-SVM classifiers along with the respective accuracies
are depicted in Figure(T).

SVC with linear kernel SVC with polynomial (degree 3) kernel SVC with RBF kernel

Figure 1: Different Kernel Functions for C-SVM

Confusion matrix for SVC with linear kerne| 450
1

onfusion matrix for SVC with polynomial (degree Jllkernel
0 0 1 450
400
350
0 0
300
250
200
1 1 150
100
50 50

Figure 2: Confusion Matrix Plot for different Kernel Function for C-SVM

Confusion matrix for SVC with RBF kernel
0 1 450

400
350
300
250
200
150

100

4.0.2 Handwritten Character Dataset

‘We chose the famous MNIST Data—setﬁ]of 60,000 handwritten digits, wherein each image is of size
28x28 pixels, and can thus be considered as points in a 784 dimensional space We tested different
kernel functions for each of C-SVM, nu-SVM and Kernel KNN as depicted in Figure (E]), Figure@,
Figure(5). We plot the visualizations for the digits (0,8,9) as they are among the most mis-classified
digits.

We could not compute the gram matrix in case of Kernel KNN classifier, because of the huge size
of the matrix, and the limited computational power. And also, since Kernel KNN classifier was
performing significantly worse for the 3-digit restricted data-set.

*Data-set is available at http: //yann.lecun.com/exdb/mnist /

http://yann.lecun.com/exdb/mnist/

3-Class classification using C-SVM (kernel = linear)
on Digits 0,8,90Accuracy: 0.912321487878

3-Class classification using C-SVM (kernel = poly)
on Digits 0,8,90Accuracy: 0.925938226503

3-Class classification using C-SVM (kernel = rbf)
on Digits 0.8,90Accuracy: 0.942211889738

05

3-Class classification using Nu-SVM (kernel = rbf)
on Digits 0,8,90Accuracy: 0.925606110927

3-Class classification using KNN (kernel = rbf)
on Digits 0,8,90Accuracy: 0889737628695

05

Figure 3: Plot for digits (0,8,9) along with different Kernel Function for C-SVM
3-Class classification using Nu-SVM (kernel = linear) 3-Class classification using Nu-SVM (kernel = poly)
on Digits 0,8,90Accuracy: 0.896047824643 on Digits 0,8,9Accuracy: 0.906675523082
Figure 4: Plot for digits (0,8,9) along with different Kernel Function for Nu-SVM
3-Class classification using KNN (kernel = linear) 3-Class classification using KNN (kernel = poly)

Figure 5: Plot for digits (0,8,9) along with Kernel Function for Kernelized KNN

Confusion matrix for SVC

8

1050

750

600

300

150

Confusion matrix for NuSVC

1050

8

900

750

600

450

300

150

Figure 6: Confusion Matrix Plot for MNIST dataset

4.0.3 Face Detection Data-set

We use the ATT FaceDatabase | and the FaceRec library [for face detection task. We used Fish-
erFaces as a Feature Extractor, followed by our choice algorithms. We obtained the best validation
accuracy of 97.75% for the KNN with RBF kernel and number of nearest neighbor equals to 4.
FisherFaces acts as a dimensional reduction techniques, making KNN scalable for larger data

5 Conclusions

In the case of the two class classification problem of spam and non-spam messages, we observer
that linear classifiers clearly outperform the other Kernel classifiers. Thus implying that there was
linearity in the input space. In such a situation, usage of kernel functions does not seem to add
benefit.

However in the case of MNIST data-set where the input space was observed to be non-linear, we
observe that the Kernelized Classifiers, almost always reported a higher accuracy. KNN Classifier
with a euclidean metric was the worst classifier for this task. This primarily can be related to the way
that different digits can be written in different styles, which have different distances among them.

We also noted that Kernel Nearest Neighbor Classifier suffered from longer training times, and also
increased requirement of computations during the testing time. Kernel functions compensated for
the increase in the training time, through significant increases in accuracy in some cases. We observe
that C-SVM emerges as the choice classifier to be used in practice.

The success of a kernel classifier thus deeply dependent on the chosen kernel function. Any failure
of Kernel method is probably because of the incapability in selecting the desired kernel function that
could model such complex data. Construction of a proper kernel remains an important obstacle for
the successful application of these algorithms in some cases.

References

[1] D. Burges and C. Crisp. A geometric interpretation of v- svi classifiers. Advances in neural
information processing systems, 12(12):244, 2000.

[2] P.-H. Chen, C.-J. Lin, and B. Scholkopf. A tutorial on v-support vector machines. Applied
Stochastic Models in Business and Industry, 21(2):111-136, 2005.

[3] C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273-297, 1995.

[4] D. Decoste and B. Scholkopf. Training invariant support vector machines. Machine learning,
46(1-3):161-190, 2002.

[5] Y. LeCun, L. Jackel, L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I. Guyon, U. Muller,
E. Sackinger, P. Simard, et al. Learning algorithms for classification: A comparison on hand-
written digit recognition. Neural networks: the statistical mechanics perspective, 261:276,
1995.

[6] K.-R. Miiller, S. Mika, G. Ritsch, K. Tsuda, and B. Scholkopf. An introduction to kernel-based
learning algorithms. Neural Networks, IEEE Transactions on, 12(2):181-201, 2001.

[7] D. Roobaert and M. M. Van Hulle. View-based 3d object recognition with support vector
machines. In Neural Networks for Signal Processing IX, 1999. Proceedings of the 1999 IEEE
Signal Processing Society Workshop., pages 77-84. IEEE, 1999.

[8] B. Scholkopf, A.J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms.
Neural computation, 12(5):1207-1245, 2000.

[9] S.P. Scholkopf, V. Vapnik, and A. Smola. Improving the accuracy and speed of support vector
machines. Advances in neural information processing systems, 9:375-381, 1997.

[10] K. Yu, L. Ji, and X. Zhang. Kernel nearest neighbor algorithm. Neural Processing Letters,
15(2):147-156, 2002.

SDataset is available at |http://www.cl.cam.ac.uk/research/dtg/attarchive/
facedatabase.html
°FaceRec library is available for Python athttps://github.com/bytefish/facerec

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
https://github.com/bytefish/facerec

Part of code used for development

sklearn does not provide an interface for Kernel KNN Classifier, the
same was thus implemented by seeking help from
https://github.com/jsantarc/Kernel-Nearest-Neighbor-Algorithm-in-Python-

visualization code for MNIST data-set

import os, struct

from array import array as pyarray

from numpy import arange, array, int8, uint8, =zeros, array, append
from struct import unpack

from skimage.feature import hog

from sklearn.cross_validation import StratifiedShuffleSplit
import cv2

import matplotlib.pyplot as plt

from sklearn.grid_search import GridSearchCV

from sklearn.decomposition import PCA

from time import time

from operator import itemgetter

from scipy.stats import randint

import cv2

import numpy as np

from sklearn import svm, ensemble , tree

from sklearn.metrics import confusion_matrix

import pylab as pl

from cPickle import dump, load

from skimage.feature import hog

import skimage

from matplotlib.colors import ListedColormap

from sklearn.utils import shuffle

import numpy as np

from sklearn import neighbors, datasets

from sklearn.metrics.pairwise import pairwise_kernels
import numpy as np

FILTER="hog"

def load_mnist (dataset="training", digits=np.arange(10), path="."):

nun

Loads MNIST files into 3D numpy arrays

Adapted from: http://abel.ee.ucla.edu/cvxopt/_downloads/mnist.py
and http://g.sweyla.com/blog/2012/mnist-numpy/

nun

if dataset == "training":
fname_img = os.path.join(path, ’train-images.idx3-ubyte’)
fname_1lbl = os.path.join(path, ’'train-labels.idxl-ubyte’)
elif dataset == "testing":
fname_img os.path.join(path, ’'tl0k-images.idx3-ubyte’)
fname_1bl = os.path.join(path, ’"tl0k-labels.idxl-ubyte’)
else:
raise ValueError ("dataset must be 'testing’ or ’‘training’")

flbl = open(fname_1lbl, ’'rb’)

magic_nr, size = struct.unpack (">II", flbl.read(8))
1bl = pyarray ("b", flbl.read())

flbl.close ()

fimg = open(fname_img, 'rb’)
magic_nr, size, rows, cols =
img = pyarray("B", fimg.read(
fimg.close ()

struct.unpack (">IIII", fimg.read(16))
))

ind = [k for k in range(size) if 1lbl[k] in digits]
N = len (ind)

images = zeros((N, rows, cols), dtype=uint8)
labels = zeros((N, 1), dtype=int8)
for i in range(len(ind)) :

images[i] = array(img[ind[i]*rowsxcols : (ind[i]+1)*rows*cols
1) .reshape ((rows, cols))
labels[i] = 1bl[ind[i]]

return images, labels
def extract_hog(X_train_name,¥Y_name, save=True, filetype="Train"):

hogs = []
count =0
total = len (Y_name)

for imgfile in X_train_name:
cv2.imwrite ("temp.png", imgfile)
img = cv2.imread("temp.png")
#print img
img = cv2.resize(img, (28,28))
gray_img = cv2.cvtColor (img, cv2.COLOR_BGR2GRAY)
fd = hog(gray_img,normalise =True, orientations=9,
pixels_per_cell=(14, 14), cells_per_block=(1,1),
visualise=False)
comp = skimage.feature.hog(img)
hogs.append(£d)
lens.add (comp.shape)
#print type (comp)
count+=1
print "done", count, total
X_train = np.array(hogs , ’'float64’)

if save==True:

dump (X_train, open(FILTER+filetype+"1", "wb"))

dump (Y_name, open("Y_"+filetype+"1", "wb"))

print "Files stored: "+FILTER+filetype +"and Y_"+filetype
return X_train, np.array(Y_name)

def refineSets (images, labels, size):
result = zeros (10)
count =0
X=[]
Y=1[]

for i in range(0,len(labels)):

label = labels[i]

feature = images|[i]

if result[label]<=size:
X.append (feature)
Y.append(label)
count+=1
result [label]+=1

if count > sizex10:
break

return array(X), np.array(Y)

def saveFeatures (X_name, Y_name, save=True,filetype="Train"):

if FILTER=="hog":
return extract_hog(X_name,Y_name, save, filetype)

help sought from
https://github.com/jsantarc/Kernel-Nearest-Neighbor-Algorithm-in-Python-
def KernelKNNClassifierFit (X,Y,Kernel,Parameters):
Y= np.array (Y)

#Number of training samples

N=1len (X) ;

#Array sorting value of kernels k(x,x)

Gram_Matrix=np.zeros (N);

#Calculate Kernel vector between same vectors Kxx[n]=k (X[n,:],X[n,:])
#dummy for kernel name

for n in range(0,N):

Gram_Matrix[n]=pairwise_kernels(X[n],
metric=Kernel, filter_ params=Parameters)
return Gram_Matrix

def predict (X_test,X_train,Kernel,Parameters, Gram Matrix, Y_train,
n_neighbors=1) :

Nz=len (X_test)

#Empty list of predictions

vhat= np.zeros (Nz);

#number of samples for classification

#Number of training samples

Nx=len (X_train);

#Dummy variable Vector of ones used to get rid of one loop for k(z,z)
Ones=np.ones (Nx) ;

#squared Euclidean distance in kernel space for each training sample
Distance=np.zeros (Nx)

Index of sorted values

Index= np.zeros (Nx)

calculate pairwise kernels beteen Training samples and prediction
samples

Kxz=pairwise_kernels (X_train,X_test,
metric=Kernel, filter_params=Parameters)

NaborsNumberAdress=range (0, n_neighbors)
#Calculate Kernel vector between same vectors Kxx[n]=k(Z[n,:],2Z[n,:])

for n in range(0,Nz):
calculate squared Euclidean distance in kernel space for each
training sample
#for one prediction
#for m in range (0, Nx)
#Distance[m]=|phi(x[m])-phi(z[n]) | 2=k (x,x)+k(z,z) -2k (z,X)

Distance =Gram_Matrix+pairwise_kernels (X_test[n],
metric=Kernel, filter_ params=Parameters) «Ones—-2xKxz[:,n]

#Distance indexes sorted from smallest to largest
Index=np.argsort (Distance.flatten());
Index=Index.astype (int)

#get the labels of the nearest feature vectors
yl=1list (Y_train[Index[NaborsNumberAdress]])
#perform majority vote
vhat [n]=max (set (yl), key=yl.count)

return (yhat)

if __name_ == "_ _main__ ":
train_images, train_labels = refineSets(train_images, train_labels,
1111) # working with smaller subset
test_images, test_labels = refineSets(test_images, test_labels,

111) # working with a smaller subset

retrain = raw_input ("Feature Extraction??")

if retrain=="y"
train_images,train_labels = load_mnist (’training’, digits=[8,9])
test_images,test_labels = load_mnist (’testing’,digits=[8,9])
X_train, Y_train = saveFeatures(train_images,train_labels)
X_test, Y_test= saveFeatures (test_images, test_labels, save=True,
filetype="Test")
Y_train=Y_train.flatten()
Y _test = Y_test.flatten()
else:
with open(FILTER+"Trainl", ’'rb’) as fp:
X_train = load(fp)
with open("Y_Trainl", 'rb’) as fp:
Y_train = load(fp)
with open (FILTER+"Testl", ’'rb’) as fp:
X_test = load(fp)
with open("Y_Testl", 'rb’) as fp:
Y_test = load(fp)
Y _train=Y_train.flatten ()
Y _test = Y_test.flatten()

hog features extracted

1 have the hog features, I need to apply SVM the kernel svm and
other stuff... and nearest neighbor classifier too,

1 need to do some visualizations.. Need to add confusion matrix

Visualization help sought from
https://github.com/saradhix/mnist_svm/blob/master/plot_mnist_svm.py

num_samples_to_plot = 1000

X_train, Y_train = shuffle(X_train, Y_train)

X_train, Y_train = X_train[:num_samples_to_plot],
Y _train([:num_samples_to_plot]

pca = PCA (n_components=2)

X = pca.fit_transform(X_train)

print X.shape
y=Y_train

h = .02 # step size in the mesh

n_neighbors=4

Create color maps

cmap_light = ListedColormap ([’ #FFAAAA’, '#AAFFAA’, '#AAAAFF’])
cmap_bold = ListedColormap ([’ #FF0000’, "#00FF00’, "#0000FF’])

for k in [’poly’]:

we create an instance of Neighbours Classifier and fit the data.

if k==’"1linear’:
clf = KernelKNNClassifierFit(X,y,’linear’,0)
clfl = KernelKNNClassifierFit (X_train,Y_ train,’linear’,0)
71 = predict (X_test,

X_train,’linear’,0,clfl,Y_train,n_neighbors)

accuracy = np.mean (Z1==Y_test)
print accuracy
raw_input ()

elif k=="poly’:
clf= KernelKNNClassifierFit (X,y, poly’,3)
clfl = KernelKNNClassifierFit (X_train,Y_train,’poly’, 3)
721 = predict (X_test, X_train,’poly’,3,clfl,Y _train,n_neighbors)
accuracy = np.mean (Z1==Y_test)
print accuracy

elif k=='rbf’:

clf= KernelKNNClassifierFit (X,y,’ rbf’,1)
clfl = KernelKNNClassifierFit (X_train,Y_train,’rbf’,1)
71 = predict (X_test, X_train,’rbf’,1,clfl,Y _train,n_neighbors)

10

accuracy = np.mean (zZ1l==Y_test)
print accuracy

I have gramMatrix in clf

Plot the decision boundary. For that, we will assign a color to
each
point in the mesh [x_min, m_max]x[y_min, y_max].
Xx_min, x_max = X[:, 0].min() - 1, X[:, O0].max() +
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() +
XX, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange (y_min, y_max, h))
if k==’1linear’:
Z=predict (np.c_[xx.ravel (), yy.ravel()], X,’linear’,Q,
clf,y,n_neighbors)
if k=="poly’:
Z=predict (np.c_[xx.ravel (), yy.ravel()],
X,’poly’,3,clf,y,n_neighbors)

1
1

if k=="rbf’:
Z=predict (np.c_[xx.ravel (), yy.ravel()],
X,"cosine’,1l,clf,y,n_neighbors)
print Z
Put the result into a color plot
7 = Z.reshape (xx.shape)
plt.figure()

plt.pcolormesh (xx, yy, Z, cmap=cmap_light)

Plot also the training points

plt.scatter (X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
plt.xlim(xx.min (), xx.max())

plt.ylim(yy.min(), yy.max())

plt.title("3-Class classification using KNN (kernel = "+k+")\n
"+"on Digits 0,8, 9\tAccuracy: " +str (accuracy))
plt.savefig ("KNNO89-Final"+k+".png")

code for SVC, nuSVC MNIST

import os, struct

from array import array as pyarray

from numpy import arange, array, int8, uint8, =zeros, array, append
from struct import unpack

from skimage.feature import hog

from sklearn.tree import DecisionTreeClassifier

from sklearn.cross_validation import StratifiedShuffleSplit
import cv2

import matplotlib.pyplot as plt

from sklearn.grid_search import GridSearchCV

from sklearn.metrics import confusion_matrix

from time import time

from operator import itemgetter

from scipy.stats import randint

import cv2

import numpy as np

from sklearn import svm, ensemble , tree
from sklearn.metrics import confusion_matrix
import pylab as pl

from cPickle import dump, load

from skimage.feature import hog

import skimage

from sklearn.neighbors import KNeighborsClassifier

11

from matplotlib.colors import ListedColormap
FILTER="hog"
def load_mnist (dataset="training", digits=np.arange(10), path="."):

nun

Loads MNIST files into 3D numpy arrays

Adapted from: http://abel.ee.ucla.edu/cvxopt/_downloads/mnist.py
and http://g.sweyla.com/blog/2012/mnist-numpy/

nun

if dataset == "training":
fname_img = os.path.join(path, ’train-images.idx3-ubyte’)
fname_1bl = os.path.join(path, 'train-labels.idxl-ubyte’)
elif dataset == "testing":
fname_img = os.path.join(path, ’'tlOk-images.idx3-ubyte’)
fname_1bl = os.path.join(path, ’"tl0k-labels.idxl-ubyte’)
else:
raise ValueError ("dataset must be 'testing’ or ’‘training’")

flbl = open(fname_1lbl, ’'rb’)

magic_nr, size = struct.unpack (">II", flbl.read(8))
1bl = pyarray("b", flbl.read())

flbl.close ()

fimg = open(fname_img, 'rb’)
magic_nr, size, rows, cols =
img = pyarray("B", fimg.read
fimg.close ()

struct.unpack (">IIII", fimg.read(16))
()

ind = [k for k in range(size) if 1lbl[k] in digits]
N = len (ind)

images = zeros ((N, rows, cols), dtype=uint8)
labels = zeros((N, 1), dtype=int8)
for i in range(len(ind)) :

images[i] = array(img[ind[i]*rowsxcols : (ind[i]+1)*rows*cols
1) .reshape ((rows, cols))
labels[i] = 1lbl[ind[1]]

return images, labels
def extract_hog(X_train_name,¥Y_name, save=True, filetype="Train"):

hogs = []
count =0
total = len (Y_name)

for imgfile in X_train_name:
cv2.imwrite ("temp.png", imgfile)
img = cv2.imread("temp.png")
#print img
img = cv2.resize(img, (28,28))
gray_img = cv2.cvtColor (img, cv2.COLOR_BGR2GRAY)
fd = hog(gray_img,normalise =True, orientations=9,
pixels_per_cell=(14, 14), cells_per_block=(1,1),
visualise=False)
comp = skimage.feature.hog(img)
hogs.append(fd)
lens.add (comp.shape)
#print type (comp)
count+=1
print "done", count, total
X_train = np.array(hogs , ’'float6d’)

if save==True:
dump (X_train, open(FILTER+filetype, "wb"))
dump (Y_name, open("Y_ "+filetype, "wb"))
print "Files stored: "+FILTER+filetype +"and Y_"+filetype

12

return X_train, np.array(Y_name)

def refineSets(images, labels, size):
result = zeros(10)
count =0
X=[]
Y=[]

for i in range(0,len(labels)):

label = labels[i]

feature = images([i]

if result[label]l<=size:
X.append (feature)
Y.append (label)
count+=1
result[label]+=1

if count > sizex10:
break

return array(X), np.array(Y)

def showconfusionmatrix (cm, typeModel) :
pl.matshow (cm)
pl.title(’Confusion matrix for ’+typeModel)
pl.colorbar ()
pl.show ()

def report (grid_scores, n_top=3):
"""Report top n_top parameters settings, default n_top=3.

Args

grid_scores -- output from grid or random search

n_top —-- how many to report, of top models

Returns

top_params ——- [dict] top parameter settings found in
search

top_scores = sorted(grid_scores,

key=itemgetter (1),
reverse=True) [:n_top]
for i, score in enumerate (top_scores):
print ("Model with rank: {0}".format(i + 1))
print (("Mean validation score: "
"{0:.3f} (std: {1:.3f})").format (
score.mean_validation_score,
np.std(score.cv_validation_scores)))
print ("Parameters: {0}".format (score.parameters))
print (" n)

return top_scores[0] .parameters
def run_gridsearch(X, vy, clf, param_grid, cv=5):
"""Run a grid search for best Decision Tree parameters.

Args

X —-- features

y —— targets (classes)

cf —-— scikit-learn Decision Tree

param_grid —-- [dict] parameter settings to test
cv —— fold of cross-validation, default 5
Returns

13

top_params [dict] from report ()

print "GridSearchCV starting”

grid_search GridSearchCV (clf,
param_grid=param_grid,
cv=CVv)

start time ()

print "Fit starting"

grid_search.fit (X, vy)

print (("\nGridSearchCV took {:.2f} "

"seconds for {:d} candidate "

"parameter settings.").format (time ()
len(grid_search.grid_scores_)))

top_params
return top_params
def saveFeatures (X_name, Y_name,

if FILTER=="hog":
return extract_hog(X_name, Y_name, save,

if name == "__main__ ":

train_images, train_labels = refineSets(
1111) # working with smaller subset

test_images, test_labels
111) # working with a smaller subset

retrain = raw_input ("Feature Extraction??"

if retrain=="y"
train_images,train_labels
test_images,test_labels
X_train, Y_train
X_test,
filetype="Test")
Y_train=Y_train.flatten()

load_mnist (

report (grid_search.grid_scores_,

Y_test= saveFeatures (test_images,

start,

3)

save=True, filetype="Train") :

filetype)

train_images,

refineSets (test_images,

)

"training’)
load_mnist (testing’)
saveFeatures (train_images,train_labels)

test_labels, save=True,

train_labels,

test_labels,

Y test = Y _test.flatten()
else:

with open(FILTER+"Train", ’'rb’) as fp:
X_train = load(fp)

with open("Y_Train", ’'rb’) as fp:
Y_train = load(fp)

with open(FILTER+"Test", ’'rb’) as fp:
X_test = load(fp)

with open("Y_Test", ’'rb’) as fp:

Y_test

load (fp)

Y train=Y_train.flatten()

Y_test

hog features

i1 have the hog features,
other stuff...

1 need to do
C_range

= A

param_grid

np.
gamma_range=[2,

Y test.flatten()

extracted

I need to apply SVM the kernel svm and
and nearest neighbor classifier too,

some visualizations.. Need to add confusion matrix
logspace (-2,2,4)

4,6]

"kernel" :[’'poly’,’rbf’, ’linear’],
"gamma": gamma_range,
"nu’ [0.5]

14

e T

H o

clf = svm.NuSVC (kernel='rbf’,gamma=6)
clf.fit(X_train,¥Y_train)

predicted = clf.predict (X_test)

cm = confusion_matrix (predicted, Y_test)
showconfusionmatrix (cm, "NuSVC")

print "NuSVC accuracy" ,np.mean(Y_test==predicted)

clf = svm.SVC(kernel='rbf’,gamma=6)
clf.fit(X_train,Y_train)

predicted = clf.predict (X_test)

cm = confusion_matrix(predicted, Y_test)
showconfusionmatrix (cm, ’SVC’)

print "SVC accuracy" ,np.mean(Y_test==predicted)

dump (ts_gs, open("modell", "wb"))

GridSearchCV took 836.51 seconds for 24 candidate parameter settings.

Model with rank: 1
Mean validation score: 0.963 (std: 0.002)

Parameters: {’kernel’: ’"rbf’, ’'C’: 4.6415888336127775,

Model with rank: 2
Mean validation score: 0.963 (std: 0.002)

Parameters: {’kernel’: ’"rbf’, ’'C’: 4.6415888336127775,

Model with rank: 3
Mean validation score: 0.963 (std: 0.002)

Parameters: {’kernel’: ’"rbf’, ’'C’: 4.6415888336127775,

print clf.score(hog_test_images,test_labels)

"gamma’ : 2}

"gamma’: 4}

"gamma’ : 6}

1 have the hog features, I need to apply SVM the kernel svm and
other stuff... and nearest neighbor classifier too,
1 need to do some visualizations.. Need to add confusion matrix

Nu-SVM parameters

#

code for Kernel KNN MNIST

import os, struct

from array import array as pyarray

from numpy import arange, array, int8, uint8, =zeros,
from struct import unpack

from skimage.feature import hog

from sklearn.tree import DecisionTreeClassifier

from

import cv2

import matplotlib.pyplot as plt

from sklearn.grid_search import GridSearchCV
from sklearn.decomposition import PCA

from time import time

from operator import itemgetter

from scipy.stats import randint

import cv2

import numpy as np

from sklearn import svm, ensemble , tree
from sklearn.metrics import confusion_matrix
import pylab as pl

from cPickle import dump, load

from skimage.feature import hog

15

array,

sklearn.cross_validation import StratifiedShuffleSplit

append

import skimage

from matplotlib.colors import ListedColormap

from sklearn.utils import shuffle

import numpy as np

from sklearn import neighbors, datasets

from sklearn.metrics.pairwise import pairwise_kernels

import numpy as np

FILTER="hog"

def load_mnist (dataset="training", digits=np.arange(10), path="."):

nun

Loads MNIST files into 3D numpy arrays

Adapted from: http://abel.ee.ucla.edu/cvxopt/_downloads/mnist.py
and http://g.sweyla.com/blog/2012/mnist-numpy/

nun

if dataset == "training":
fname_img = os.path.join(path, ’train-images.idx3-ubyte’)
fname_1lbl = os.path.join(path, ’'train-labels.idxl-ubyte’)
elif dataset == "testing":
fname_img os.path.join(path, ’'tl0k-images.idx3-ubyte’)
fname_1bl = os.path.join(path, ’"tl0k-labels.idxl-ubyte’)
else:
raise ValueError ("dataset must be 'testing’ or ’‘training’")

flbl = open(fname_1lbl, ’'rb’)

magic_nr, size = struct.unpack (">II", flbl.read(8))
1bl = pyarray("b", flbl.read())

flbl.close ()

fimg = open (fname_img, 'rb’)
magic_nr, size, rows, cols =
img = pyarray("B", fimg.read(
fimg.close ()

struct.unpack (">IIII", fimg.read(16))
))

ind = [k for k in range(size) if 1lbl[k] in digits]
N = len (ind)

images = zeros((N, rows, cols), dtype=uint8)
labels = zeros((N, 1), dtype=int8)
for i in range(len(ind)) :

images[i] = array(img[ind[i]*rowsxcols : (ind[i]+1)*rows*cols
1) .reshape ((rows, cols))
labels[i] = 1lbl[ind[i]]

return images, labels
def extract_hog(X_train_name,¥Y_name, save=True, filetype="Train"):

hogs = []
count =0
total = len (Y_name)

for imgfile in X_train_name:

cv2.imwrite ("temp.png", imgfile)

img = cv2.imread("temp.png")

#print img

img = cv2.resize(img, (28,28))

gray_img = cv2.cvtColor (img, cv2.COLOR_BGR2GRAY)

fd = hog(gray_img,normalise =True, orientations=9,
pixels_per_cell=(14, 14), cells_per_block=(1,1),
visualise=False)

comp = skimage.feature.hog(img)

hogs.append(f£d)

lens.add (comp.shape)

#print type (comp)

count+=1

print "done", count, total

16

X_train = np.array(hogs , ’'float64’)

if save==True:

dump (X_train, open(FILTER+filetype+"1", "wb"))

dump (Y_name, open("Y_ "+filetype+"1", "wb"))

print "Files stored: "+FILTER+filetype +"and Y_"+filetype
return X_train, np.array(Y_name)

def refineSets(images, labels, size):
result = zeros (10)
count =0
X=[]
Y=[]

for i in range(0,len(labels)):

label = labels[i]

feature = images([i]

if result[label]l<=size:
X.append (feature)
Y.append (label)
count+=1
result[label]+=1

if count > sizex10:
break

return array(X), np.array(Y)

def saveFeatures (X_name, Y_name, save=True,filetype="Train"):

if FILTER=="hog":
return extract_hog(X_name,Y_name, save, filetype)

help sought from
https://github.com/jsantarc/Kernel-Nearest-Neighbor-Algorithm-in-Python-—
def KernelKNNClassifierFit (X,Y,Kernel,Parameters):
Y= np.array (Y)
#Number of training samples
N=len (X) ;
#Array sorting value of kernels k(x,x)
Gram_Matrix=np.zeros (N);
#Calculate Kernel vector between same vectors Kxx[n]=k (X[n,:],X[n,:])
#dummy for kernel name
for n in range(0,N):

Gram_Matrix[n]=pairwise_kernels(X[n],
metric=Kernel, filter_params=Parameters)
return Gram_Matrix

def predict (X_test,X_train,Kernel,Parameters, Gram Matrix, Y_train,
n_neighbors=1) :

Nz=len (X_test)

#Empty list of predictions

vhat= np.zeros (Nz);

#number of samples for classification

#Number of training samples

Nx=len (X_train);

#Dummy variable Vector of ones used to get rid of one loop for k(z,z)
Ones=np.ones (Nx) ;

#squared Euclidean distance in kernel space for each training sample
Distance=np.zeros (Nx)

Index of sorted values

Index= np.zeros (Nx)

17

if

calculate pairwise kernels beteen Training samples and prediction
samples

Kxz=pairwise_kernels (X_train,X_test,
metric=Kernel, filter_params=Parameters)

NaborsNumberAdress=range (0, n_neighbors)
#Calculate Kernel vector between same vectors Kxx[n]=k(Z[n,:],Z[n,:])

for n in range(0,Nz):
calculate squared Euclidean distance in kernel space for each
training sample
#for one prediction
#for m in range (0,Nx)
#Distance[m]=|phi (x[m])-phi(z[n]) | 2=k (x,x)+k(z,2z)-2k(z,x)

Distance =Gram_Matrix+pairwise_kernels (X_test[n],
metric=Kernel, filter_params=Parameters) *Ones—-2*Kxz[:,n]

#Distance indexes sorted from smallest to largest
Index=np.argsort (Distance.flatten());
Index=Index.astype (int)

#get the labels of the nearest feature vectors
yl=list (Y_train[Index[NaborsNumberAdress]])
#perform majority vote
vhat [n]=max (set (yl), key=yl.count)

return (yhat)

__name___ == "__main_":

train_images, train_labels = refineSets(train_images, train_labels,
1111) # working with smaller subset

test_images, test_labels = refineSets (test_images, test_labels,
111) # working with a smaller subset

retrain = raw_input ("Feature Extraction??")

if retrain=="y"
train_images,train_labels = load_mnist (’training’)
test_images,test_labels = load_mnist (’testing’)
X_train, Y_train = saveFeatures(train_images,train_labels)
X_test, Y_test= saveFeatures (test_images, test_labels, save=True,
filetype="Test")
Y train=Y_train.flatten()
Y test = Y_test.flatten()
else:
with open (FILTER+"Train", ’"rb’) as fp:
X_train = load(fp)
with open("Y_Train", 'rb’) as fp:
Y_train = load(fp)
with open(FILTER+"Test", ’"rb’) as fp:
X_test = load(fp)
with open("Y_Test", 'rb’) as fp:
Y_test = load(fp)
Y_train=Y_train.flatten()
Y _test = Y_test.flatten()

hog features extracted

1 have the hog features, I need to apply SVM the kernel svm and
other stuff... and nearest neighbor classifier too,

1 need to do some visualizations.. Need to add confusion matrix

Visualization help sought from
https://github.com/saradhix/mnist_svm/blob/master/plot_mnist_svm.py

18

n_neighbors=4

for k in [’poly’, ’'linear’,’rbf’]:
we create an instance of Neighbours Classifier and fit the data.
if k==’"1linear’:
clfl = KernelKNNClassifierFit (X_train,Y_train,’linear’,0)
721 = predict (X_test,
X_train,’linear’,0,clfl,Y_train,n_neighbors)
accuracy = np.mean (Z1l==Y_test)
print "linear",accuracy
elif k==’'cosine’:
clfl = KernelKNNClassifierFit (X_train,Y_train,’cosine’, 1)
Z1 = predict (X_test,
X_train,’cosine’,1,clfl,Y_train,n_neighbors)
accuracy = np.mean (Z1==Y_test)
print "Cosine",accuracy
elif k=='rbf’:
clfl = KernelKNNClassifierFit (X_train,Y_ train,’rbf’,2)
721 = predict (X_test, X_train,’rbf’,2,clfl,¥Y train,n_neighbors)
accuracy = np.mean (Z1==Y_test)
print "RBF",accuracy
I have gramMatrix in clf

Cosine 0.94500723589
linear 0.945489628558
RBF 0.945489628558

code for Kernel KNN classifier spam-non spam

from os import listdir

from os.path import isfile, join

import sys

import numpy

import cPickle as pickle

import collections, re

import scipy.sparse

from sklearn import svm

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.naive_bayes import MultinomialNB

from sklearn.lda import LDA

from nltk.stem import PorterStemmer, WordNetLemmatizer
from sklearn.linear_model import Perceptron

from sklearn.feature_extraction.text import TfidfVectorizer
import cv2

import numpy as np

from sklearn import svm, ensemble , tree

from sklearn.metrics import confusion_matrix

import pylab as pl

from cPickle import dump, load

from skimage.feature import hog

import skimage

from matplotlib.colors import ListedColormap

from sklearn.utils import shuffle

import numpy as np

from sklearn import neighbors, datasets

from sklearn.metrics.pairwise import pairwise_kernels
import numpy as np

from sklearn.decomposition import PCA

def createCorpus(data,i, binaryX="False", stopWords=None,
lemmatize="False", tfidf= "False", useidf="True"): # will vectorize
BOG using frequency as the parameter and will return the required
arrays

19

X_train =[]
X_test=[]
Y train=[]
Y _test=[]

for key in data:
if key in 1i:

for filename in datalkey]:
text = datalkey][filename] [0]

if lemmatize == "True":
port = WordNetLemmatizer ()
text = " ".Jjoin([port.lemmatize(k,"v") for k in

text.split()])
X_test.append (text)
Y_test.append(datalkey] [filename] [1])
else:
for filename in datalkey]:
text = datalkey][filename] [0]

if lemmatize == "True":
port = WordNetLemmatizer ()
text = " ".Jjoin([port.lemmatize (k,"v") for k in

text.split()])
X_train.append (text)
Y_train.append(datalkey] [filename] [1])
if tfidf == "False":
vectorizer = CountVectorizer (min_df=1, binary= binaryX,
stop_words=stopWords)
X_train_ans = vectorizer.fit_transform(X_train)
X_test_ans = vectorizer.transform(X_test)
return X_train_ans, Y_train, X_test_ans,Y_test
elif tfidf == "True":
vectorizer = TfidfVectorizer (min_df=1, use_idf=useidf)
X_train_ans = vectorizer.fit_transform(X_train)
X_test_ans = vectorizer.transform(X_test)

return X_train_ans, Y_train, X_test_ans,Y_ test

help sought from
https://github.com/jsantarc/Kernel-Nearest-Neighbor-Algorithm-in-Python-—
def KernelKNNClassifierFit (X,Y,Kernel,Parameters):
Y= numpy.array (Y)
#Number of training samples
N=len (X) ;
#Array sorting value of kernels k(x,x)
Gram_Matrix=numpy.zeros (N);
#Calculate Kernel vector between same vectors Kxx[n]=k(X[n,:],X[n,:])
#dummy for kernel name
for n in range(0,N) :

Gram_Matrix[n]=pairwise_kernels (X[n],
metric=Kernel, filter_params=Parameters)
return Gram_Matrix

def predict (X_test,X_train,Kernel,Parameters, Gram Matrix, Y_train,
n_neighbors=1) :
Y _train=np.array(Y_train)
Nz=len (X_test)
#Empty list of predictions
vhat= numpy.zeros (Nz);
#number of samples for classification
#Number of training samples
Nx=len (X_train);
#Dummy variable Vector of ones used to get rid of one loop for k(z,z)
Ones=numpy.ones (Nx) ;

20

#squared Euclidean distance in kernel space for each training sample

Distance=numpy.zeros (Nx)
Index of sorted values
Index= numpy.zeros (Nx)

calculate pairwise kernels beteen Training samples and prediction

samples
Kxz=pairwise_kernels (X_train,X_test,

metric=Kernel, filter_ params=Parameters)

NaborsNumberAdress=range (0, n_neighbors)

#Calculate Kernel vector between same vectors Kxx[n

for n in range (0,Nz) :

calculate squared Euclidean distance in kernel space for each

training sample
#for one prediction
#for m in range (0, Nx)

1=k (Z[n,:],2Z[n,

#Distance[m]=|phi (x[m])-phi(z[n]) | 2=k (x,x)+k(z,z)-2k(z,x)

Distance =Gram_Matrix+pairwise_kernels (X_test[n],
metric=Kernel, filter_params=Parameters) «Ones—-2xKxz[:,n]

#Distance indexes sorted from smallest to largest
Index=numpy.argsort (Distance.flatten());

Index=Index.astype (int)

#get the labels of the nearest feature vectors
yl=1list (Y_train[Index[NaborsNumberAdress]])

#perform majority vote

vhat [n]=max (set (yl), key=yl.count)

return (yhat)

def crossValidation (data,Parameters) :
n_neighbors=4

accuracy=0 # with frequency
for 1 in [O0]:
testSet = [2%i+1,2%x1+4+2]

X_train, Y_train,X_ test,Y_ test =

binaryX="False", stopWords="english",

with frequency
X_train= X_train.todense ()
X_test=X_test.todense ()
print "Fitting"
num_samples_to_plot = 1000

X_train, Y_train = shuffle(X_train,

createCorpus (data, testSet,
lemmatize="False") #

Y train)

X_train, Y_train = X_train[:num_samples_to_plot],

Y train[:num_samples_to_plot]
pca = PCA (n_components=2)
X = pca.fit_transform(X_train)

print X.shape
y=Y_train

h = .02 # step size in the mesh
n_neighbors=4
Create color maps

cmap_light = ListedColormap ([’ #FFAAAA’,
cmap_bold = ListedColormap ([’ #FF0000",

for k in [’cosine’, ’'linear’, ’'rbf’]:

21

" $AAFFAA’,
" #00FF00’,

" #AAAAFF’ 1)

"#0000FF" 1)

: 1)

we create an instance of Neighbours Classifier and fit the
data.
if k=="1linear’:
clf = KernelKNNClassifierFit (X,y,’ linear’,0)
clfl = KernelKNNClassifierFit (X_train,Y_train,’linear’,0)
Z1 = predict (X_test,
X_train,’linear’,0,clfl,¥Y_train,n_neighbors)
accuracy = np.mean (Z1==Y_test)
print accuracy
elif k==’'cosine’:
clf= KernelKNNClassifierFit (X,y,’cosine’, 1)
clfl = KernelKNNClassifierFit (X_train,Y_train,’cosine’, 1)
Z1l = predict (X_test,
X_train,’cosine’,1,clfl,Y_train,n_neighbors)
accuracy = np.mean (zZ1==Y_test)
print accuracy
elif k=='cosine’:
clf= KernelKNNClassifierFit (X,y,’ rbf’,1)
clfl = KernelKNNClassifierFit (X_train,Y_train,’rbf’,1)
Z1 = predict (X_test,
X_train,’rbf’,1,clfl,Y_train,n_neighbors)
accuracy = np.mean (Z1l==Y_test)
print accuracy

I have gramMatrix in clf

Plot the decision boundary. For that, we will assign a color

to each
point in the mesh [x_min, m_max]x[y_min, y_max].
Xx_min, x_max = X[:, 0].min() - 1, X[:, O].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1

XX, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange (y_min, y_max, h))
if k==’1linear’:

Z=predict (np.c_[xx.ravel(), yy.ravel()], X,’linear’,O,
clf,y,n_neighbors)
elif k==’cosine’:
Z=predict (np.c_[xx.ravel (), yy.ravel()],

X,’cosine’,1l,clf,y,n_neighbors)
elif k=="rbf’:

Z=predict (np.c_[xx.ravel (), yy.ravel()],
X,"rbf’,1,clf,y,n_neighbors)
print Z
Put the result into a color plot
7 = Z.reshape (xx.shape)
plt.figure ()

plt.pcolormesh (xx, vy, Z, cmap=cmap_light)

Plot also the training points

plt.scatter (X[:, 0], X[:, 1], c=y, cmap=cmap_bold)
plt.xlim(xx.min (), xx.max())

plt.ylim(yy.min(), yy.max())

plt.title("2-Class classification KernelKNN (kernel = "+k
+")\nAccuracy="+str (accuracy))
plt.savefig ("KNN-SPAM"+k+".png")

if _ _name_ == "__main_ ":
loadedData=pickle.load(open("loadedData", "rb"))
questions = ["3a","3b","3c", "2ab"]

22

question
#for g in
print
for C in [
crossVa
print

#RBF: Accurac
Cosine Accu

s = ["la"J
questions:

1]:
lidation (loadedData, C)

y 0.886620992173 Gamma 0.1
racy 0.888695925627 Gamma 1

code for fa

ceDetection, modified for use from

https://github.com/bytefish/facerec

import sys, o
sys.path.appe
import face
from facerec
from facerec.
from facerec.
from facerec.
from facerec.

from facerec.
from facerec.
from facerec.
from facerec.
from facerec.
import nump
import numpy
try to impo
try:

from PIL i
except Import

import Ima
import matplo
import loggin
import matplo
import matplo
from facerec.
import cv2
from os.path
from os impor
from glob imp
from random i

s
nd("../..")
rec modules
import =

feature import Fisherfaces, SpatialHistogram,
distance import EuclideanDistance, ChiSquareDistance

classifier import NearestNeighbor
classifier import SVM

model import PredictableModel
validation import KFoldCrossValidation
visual import subplot

util import minmax_normalize

serialization import save_model, load_model

y, matplotlib and logging
as np
rt the PIL Image module

mport Image

Error:

ge

tlib.cm as cm

g

tlib.pyplot as plt

tlib.cm as cm

lbp import LPQ, ExtendedLBP

import exists, isdir, basename, join,
t makedirs, system

ort glob

mport sample, seed

from scipy import ones, mod, array

from sklearn
from sklearn.
import pylab
from cPickle
from skimage.
import skimag
import pickle
from sklearn.
import subpro

numTrain=10
numClasses=40

import svm, ensemble , tree
metrics import confusion_matrix
as pl

import dump, load

feature import hog

e

cross_validation import KFold
cess

trainDir = sys.argv[l]

def get_class
classes_pa

(datasetpath, numClasses):

ths = [files
for files in glob (datasetpath.strip
if isdir(files)]

23

splitext

Identity

O+ "/

classes_paths.sort ()

classes = [basename (class_path) for class_path in classes_paths]
classes = classes[:numClasses]

return classes

def imgfiles (path, extensions):

all_files = []
all _files.extend([join(path, basename (fname))

for fname in glob(path + "/x")

if splitext (fname) [-1].lower () in extensions])
return all_files

def readImage (X_fileName) :

feats = []
for imgfile in X_fileName:
im = Image.open(imgfile)
im = im.convert ("L")
feats.append(np.asarray (im, dtype=np.uint8))
return feats

def all_images (numTotal, dir_path, classes):

if

all_images = []
all_images_class_labels = []
for i, imageclass in enumerate (classes):
path = join(dir_path, imageclass)
extensions = [".pgm"]
imgs = imgfiles (path, extensions)
imgs = sample (imgs, numTotal)
all_images = all_images + imgs
class_labels = list (i * ones (numTotal))
all_images_class_labels = all_images_class_labels + class_labels
all_images_class_labels = array(all_images_class_labels, ’int’)
all_images = readImage (all_images)
return all_images, all_images_class_labels

__name__ == "_ _main__ ":

classes = get_class(trainDir, numClasses)

X , vy = all_images (numTrain , trainDir, classes) # images are read
suitably

feature = Fisherfaces|()
Define a 1-NN classifier with Euclidean Distance:
classifier = NearestNeighbor (dist_metric=EuclideanDistance (
classifier=NearestNeighbor (dist_metric=EuclideanDistance (), k
Define the model as the combination
my_model = PredictableModel (feature=feature, classifier=classifier)
Compute the Fisherfaces on the given data (in X) and labels (in vy):
my_model.compute (X, V)
We then save the model, which uses Pythons pickle module:
dump (my_model, open("model", "wb"))
with open ("model", 'rb’) as fp:
model= load (fp)

), k=1)
=1)

Then turn the first (at most) 16 eigenvectors into grayscale
images (note: eigenvectors are stored by column!)
E =[]
for i in xrange (min (model.feature.eigenvectors.shape[l], 16)):
e = model.feature.eigenvectors[:,1i].reshape (X[0].shape)
E.append (minmax_normalize (e, 0,255, dtype=np.uint8))
Plot them and store the plot to "python_fisherfaces_fisherfaces.pdf"
subplot (title="Fisherfaces", images=E, rows=4, cols=4,
sptitle="Fisherface", colormap=cm.jet, filename="fisherfaces.png")
Perform a 10-fold cross validation
cv = KFoldCrossValidation (model, k=10)
cv.validate (X, vy)

24

And print the result:
cv.print_results ()

25

	Introduction
	Main Body
	Non-Linear Algorithms in Kernel Feature Spaces
	SVM Formulation (Separable Case)
	C-SVM Formulation (Non-Separable Case)
	Nu-SVM Formulation
	Kernelization of SVM and C-SVM and -SVM

	Kernel Nearest neighborDBLP:journals/npl/JiZ02
	Simulation/Results
	Spam-Non Spam Dataset
	Handwritten Character Dataset
	Face Detection Data-set

	Conclusions

